Environment
Deepest Point of Escape
Published
4 years agoon
By
admin
Marking another milestone for Kolkata?? East-West Underground Metro Project, Afcons recently completed the 43.5-m escape shaft, which not only provides ventilation to tunnels during an emergency but can be used for evacuation.
There have already been accolades aplenty for the Kolkata Metro, in Phase 2 of its construction, as it has presented India its first underwater, twin-rail transportation tunnel and deepest underground metro station, Howrah Metro, surpassing Hauz Khas and Chawri Bazaar stations in New Delhi. Adding another feather in the cap of Afcons and Kolkata Metro, India?? deepest metro escape shaft is now structurally complete. The base slab of the 43.5-m escape shaft, equivalent to a 15-storey building, has been cast for Kolkata?? East-West Underground Metro Project. Such shafts not only provide ventilation to tunnels during an emergency but can be used for evacuation.
Satya Narayan Kunwar
Achieving deep excavation
Extensive geotechnical investigations were carried out prior to construction. A state-of-the-art grabbing machine was used to complete the deep diaphragm walls at the foremost. The verticality of the trench was monitored meticulously through both the Koden instrument and dialog censors fitted in the grab machine.
??fter completion of the diaphragm walls, the excavation (43.5-m deep) was done by adopting the top-down strutting method, which involved simultaneously casting 1.50-m-deep in-situ rings of concrete grade M40, which itself functioned as struts to the excavated area,??says Kunwar. This is quite an innovative construction methodology for such a deep shaft. He adds that extensive instrumentation, such as surface and track settlement points, standpipe piezometers, tilt meters, inclinometers and optical targets, was installed and monitored scrupulously during excavation. Emergency measures for any untoward occurrences was kept in place and checked on a regular basis during the entire excavation period.
Engineering techniques and methodology
The most innovative approach was adopted when finalising the construction sequence, keeping in view the geological challenges and site proximities. Adequate precautions were taken during the d-wall construction as the twin tunnels were already completed before the shaft construction. As Kunwar shares, ??he d-wall was constructed first as a soil-retaining structure followed by the lining wall comprising 23 lifts of 1.5 m depth each to ease the construction process. A top-down construction sequence has been followed for lining wall construction to restrain the diaphragm wall movements as an effect of inner excavation.??For each excavation step, the upper constructed 1.5-m lift would serve the purpose of strut action similar to the steel strut used in the conventional construction method of metro station box.
Machines, materials, manpower!
As mentioned above, a state-of-the-art grabbing machine from Bauer was used for diaphragm wall construction. The verticality of the diaphragm wall was ensured by meticulous monitoring through Koden instruments during the grabbing operation. Inclinometers were installed in the diaphragm walls to monitor the inclination of the walls during the shaft excavation period. For installation of the diaphragm wall cage, a 160-tonne hydraulic crane was deployed.
??he excavation has been done by mucking out earth with the help of a 40-tonne gantry and a tilting-type frame bucket was used to directly unload the muck,??explains Kunwar. He adds that the grade of concrete used in the diaphragm walls and lining wall, including the base slab, was M40. The water permeability of the concrete used was 10 mm tested as per DIN 1048 and the resistance to chloride ion penetration was less than 1,000 coulomb when tested in accordance with ASTM C 1202. Fe 500D reinforcement steel as per IS:1786 has been used.
??or remedial waterproofing works, we embedded inside hydrophilic swell strips in the walls along with re-injectable hoses at each horizontal joint of the lining wall snugly fitted to receive the acrylic injection material in the future for any leakage mitigations,??adds Kunwar.
The construction was completed by deploying over 100 workers at site, working in shifts.
Safety and security during excavation
A rigorous instrumentation programme provides the requisite safeguards. The shaft site?? close proximity to the river and ancient circular railway track, with erratic geotechnical strata, necessitated the installation of such geotechnical instruments to define behaviour adequately.
??e had installed inclinometers in the diaphragm walls during construction, surface settlement and track settlement markers to denote any occurrence of any settlement on the surface and tracks during excavation, stand pipe piezometers to verify the upper and lower groundwater tables, earth pressure cells to indicate the actual earth pressure exertion on the concrete, heave gauges to indicate any basal failure at the bottom of each lift excavation and tilt meters to determine any tilts affected in the structure, and conducted a pocket penetrometer test to determine the adhesion factor of soil to concrete during excavation,??elaborates Kunwar. Additionally, emergency mitigation measures to prevent untoward incidents were put in place in advance and mock-ups were exercised regularly prior to commencement of each shift.
Precautions taken during d-wall construction
Maintaining the verticality of the diaphragm walls was itself a big challenge as the twin tunnels were completed prior to shaft construction. As mentioned above, the verticality of the trench was meticulously monitored by Koden instruments after every 10-m of trenching operations. Any deviation in the identified verticality was immediately rectified. Trenching fluid properties were scrupulously maintained prior to and during trenching operations and prior to concreting activities. Efforts were being taken to crash the time cycle of d-wall activities. Instrumentation points were installed in the tunnels prior to trenching activities to monitor any deformation in the tunnels and identify any movement.
Navigating geological challenges
The position of the shaft just besides the Ganges was full of surprising phenomena because of ancient alluvial deposition of the Ganges, river course transformations and old building foundations at the location.
In view of the erratic subsoil deposition, a detailed study was conducted for soil mapping. A large amount of borehole investigation data was analysed for generating soil profiles in the Gangetic plain. The sectional profiles thus generated showed weak cohesive strata in the upper layer followed by a water-bearing strata comprising fine sand and silt. To mitigate the erratic stratum in the upper water-bearing zone, jet grout piles around the shaft were installed way to eliminate the chances of any water ingress inside the shaft during excavation.
As it was an EPC project, the entire construction of the escape shaft involves various components like construction of the shaft up to the base slab, connection to both tunnels through cross passages, construction of the terminal building, auxiliary civil works, and architectural finishes. The total cost of construction is around Rs 400 million.
– SHRIYAL SETHUMADHAVAN
You may like
Concrete
India donates 225t of cement for Myanmar earthquake relief
Published
5 days agoon
June 17, 2025By
admin
On 23 May 2025, the Indian Navy ship UMS Myitkyina arrived at Thilawa (MITT) port carrying 225 tonnes of cement provided by the Indian government to aid post-earthquake rebuilding efforts in Myanmar. As reported by the Global Light of Myanmar, a formal handover of 4500 50kg cement bags took place that afternoon. The Yangon Region authorities managed the loading of the cement onto trucks for distribution to the earthquake-affected zones.
Concrete
Reclamation of Used Oil for a Greener Future
Published
6 days agoon
June 16, 2025By
admin
In this insightful article, KB Mathur, Founder and Director, Global Technical Services, explores how reclaiming used lubricants through advanced filtration and on-site testing can drive cost savings, enhance productivity, and support a greener industrial future. Read on to discover how oil regeneration is revolutionising sustainability in cement and core industries.
The core principle of the circular economy is to redefine the life cycle of materials and products. Unlike traditional linear models where waste from industrial production is dumped/discarded into the environment causing immense harm to the environment;the circular model seeks to keep materials literally in continuous circulation. This is achievedthrough processes cycle of reduction, regeneration, validating (testing) and reuse. Product once
validated as fit, this model ensures that products and materials are reintroduced into the production system, minimising waste. The result? Cleaner and greener manufacturing that fosters a more sustainable planet for future generations.
The current landscape of lubricants
Modern lubricants, typically derived from refined hydrocarbons, made from highly refined petroleum base stocks from crude oil. These play a critical role in maintaining the performance of machinery by reducing friction, enabling smooth operation, preventing damage and wear. However, most of these lubricants; derived from finite petroleum resources pose an environmental challenge once used and disposed of. As industries become increasingly conscious of their environmental impact, the paramount importance or focus is shifting towards reducing the carbon footprint and maximising the lifespan of lubricants; not just for environmental reasons but also to optimise operational costs.
During operations, lubricants often lose their efficacy and performance due to contamination and depletion of additives. When these oils reach their rejection limits (as they will now offer poor or bad lubrication) determined through laboratory testing, they are typically discarded contributing to environmental contamination and pollution.
But here lies an opportunity: Used lubricants can be regenerated and recharged, restoring them to their original performance level. This not only mitigates environmental pollution but also supports a circular economy by reducing waste and conserving resources.
Circular economy in lubricants
In the world of industrial machinery, lubricating oils while essential; are often misunderstood in terms of their life cycle. When oils are used in machinery, they don’t simply ‘DIE’. Instead, they become contaminated with moisture (water) and solid contaminants like dust, dirt, and wear debris. These contaminants degrade the oil’s effectiveness but do not render it completely unusable. Used lubricants can be regenerated via advanced filtration processes/systems and recharged with the use of performance enhancing additives hence restoring them. These oils are brought back to ‘As-New’ levels. This new fresher lubricating oil is formulated to carry out its specific job providing heightened lubrication and reliable performance of the assets with a view of improved machine condition. Hence, contributing to not just cost savings but leading to magnified productivity, and diminished environmental stress.
Save oil, save environment
At Global Technical Services (GTS), we specialise in the regeneration of hydraulic oils and gear oils used in plant operations. While we don’t recommend the regeneration of engine oils due to the complexity of contaminants and additives, our process ensures the continued utility of oils in other applications, offering both cost-saving and environmental benefits.
Regeneration process
Our regeneration plant employs state-of-the-art advanced contamination removal systems including fine and depth filters designed to remove dirt, wear particles, sludge, varnish, and water. Once contaminants are removed, the oil undergoes comprehensive testing to assess its physico-chemical properties and contamination levels. The test results indicate the status of the regenerated oil as compared to the fresh oil.
Depending upon the status the oil is further supplemented with high performance additives to bring it back to the desired specifications, under the guidance of an experienced lubrication technologist.
Contamination Removal ? Testing ? Additive Addition
(to be determined after testing in oil test laboratory)
The steps involved in this process are as follows:
1. Contamination removal: Using advanced filtration techniques to remove contaminants.
2. Testing: Assessing the oil’s properties to determine if it meets the required performance standards.
3. Additive addition: Based on testing results, performance-enhancing additives are added to restore the oil’s original characteristics.
On-site oil testing laboratories
The used oil from the machine passes through 5th generation fine filtration to be reclaimed as ‘New Oil’ and fit to use as per stringent industry standards.
To effectively implement circular economy principles in oil reclamation from used oil, establishing an on-site oil testing laboratory is crucial at any large plants or sites. Scientific testing methods ensure that regenerated oil meets the specifications required for optimal machine performance, making it suitable for reuse as ‘New Oil’ (within specified tolerances). Hence, it can be reused safely by reintroducing it in the machines.
The key parameters to be tested for regenerated hydraulic, gear and transmission oils (except Engine oils) include both physical and chemical characteristics of the lubricant:
- Kinematic Viscosity
- Flash Point
- Total Acid Number
- Moisture / Water Content
- Oil Cleanliness
- Elemental Analysis (Particulates, Additives and Contaminants)
- Insoluble
The presence of an on-site laboratory is essential for making quick decisions; ensuring that test reports are available within 36 to 48 hours and this prevents potential mechanical issues/ failures from arising due to poor lubrication. This symbiotic and cyclic process helps not only reduce waste and conserve oil, but also contributes in achieving cost savings and playing a big role in green economy.
Conclusion
The future of industrial operations depends on sustainability, and reclaiming used lubricating oils plays a critical role in this transformation. Through 5th Generation Filtration processes, lubricants can be regenerated and restored to their original levels, contributing to both environmental preservation and economic efficiency.
What would happen if we didn’t recycle our lubricants? Let’s review the quadruple impacts as mentioned below:
1. Oil Conservation and Environmental Impact: Used lubricating oils after usage are normally burnt or sold to a vendor which can be misused leading to pollution. Regenerating oils rather than discarding prevents unnecessary waste and reduces the environmental footprint of the industry. It helps save invaluable resources, aligning with the principles of sustainability and the circular economy. All lubricating oils (except engine oils) can be regenerated and brought to the level of ‘As New Oils’.
2. Cost Reduction Impact: By extending the life of lubricants, industries can significantly cut down on operating costs associated with frequent oil changes, leading to considerable savings over time. Lubricating oils are expensive and saving of lubricants by the process of regeneration will overall be a game changer and highly economical to the core industries.
3. Timely Decisions Impact: Having an oil testing laboratory at site is of prime importance for getting test reports within 36 to 48 hours enabling quick decisions in critical matters that may
lead to complete shutdown of the invaluable asset/equipment.
4. Green Economy Impact: Oil Regeneration is a fundamental part of the green economy. Supporting industries in their efforts to reduce waste, conserve resources, and minimise pollution is ‘The Need of Our Times’.
About the author:
KB Mathur, Founder & Director, Global Technical Services, is a seasoned mechanical engineer with 56 years of experience in India’s oil industry and industrial reliability. He pioneered ‘Total Lubrication Management’ and has been serving the mining and cement sectors since 1999.

The Indian cement industry has reached a critical juncture in its sustainability journey. In a landmark move, the Ministry of Environment, Forest and Climate Change has, for the first time, announced greenhouse gas (GHG) emission intensity reduction targets for 282 entities, including 186 cement plants, under the Carbon Credit Trading Scheme, 2023. These targets, to be enforced starting FY2025-26, are aligned with India’s overarching ambition of achieving net zero emissions by 2070.
Cement manufacturing is intrinsically carbon-intensive, contributing to around 7 per cent of global GHG emissions, or approximately 3.8 billion tonnes annually. In India, the sector is responsible for 6 per cent of total emissions, underscoring its critical role in national climate mitigation strategies. This regulatory push, though long overdue, marks a significant shift towards accountability and structured decarbonisation.
However, the path to a greener cement sector is fraught with challenges—economic viability, regulatory ambiguity, and technical limitations continue to hinder the widespread adoption of sustainable alternatives. A major gap lies in the lack of a clear, India-specific definition for ‘green cement’, which is essential to establish standards and drive industry-wide transformation.
Despite these hurdles, the industry holds immense potential to emerge as a climate champion. Studies estimate that through targeted decarbonisation strategies—ranging from clinker substitution and alternative fuels to carbon capture and innovative product development—the sector could reduce emissions by 400 to 500 million metric tonnes by 2030.
Collaborations between key stakeholders and industry-wide awareness initiatives (such as Earth Day) are already fostering momentum. The responsibility now lies with producers, regulators and technology providers to fast-track innovation and investment.
The time to act is now. A sustainable cement industry is not only possible—it is imperative.

Star Cement launches ‘Star Smart Building Solutions’

Nuvoco Vistas reports record quarterly EBITDA

UltraTech Cement increases capacity by 1.4Mt/yr

Shree Cement reports 2025 financial year results

Rekha Onteddu to become director at Sagar Cements

Star Cement launches ‘Star Smart Building Solutions’

Nuvoco Vistas reports record quarterly EBITDA

UltraTech Cement increases capacity by 1.4Mt/yr

Shree Cement reports 2025 financial year results
