Connect with us

Technology

Innovative Technology

Published

on

Shares

Though blowers and conveyors are being used for short and long distance material transport respectively in cement companies, the innovative air cushion technology promises to be cost effective in the long run.

Production of cement has always been one of the most energy-intensive operations. In order to avoid expensive primary fuels such as carbon, gas and oil, and to produce in more economical and sustainable way, cement manufacturers across the world are relying on alternative fuels for the incineration process in the calciner for several years.

Thus, cement production process involves movement of bulk materials, whether it is fuel or raw materials. Use of alternative fuels and raw materials (AFR), including solid municipal waste, nowadays, is bolstering the material transportation function further in the cement manufacturing.

Internal material transport equipment for a manufacturing unit is entirely different from those used for transportation logistics, which transport goods and other materials to long distances. Material transport equipment supplier is involved in supply and installation of the whole chain from the acceptance and unloading of the delivery vehicle, up to the storing, conveying and feeding process of the solid alternative fuels for the specific user. The solution includes transport of alternative fuels from the storehouse to the rotary kiln area as well as calciner and the main burner.

Blowers
Roots blowers (Twin/Tri Lobe Roots Blower), also called Rotary Lobe Compressors, are widely used in cement production process and used in kiln burner feeding, pre-calciner, burner feeding, raw meal silo feed Aeropol, silo mixing bin aeration and surge bin aeration, to name a few. Roots blowers are also used to convey cement and fly ash in a cement manufacturing plant, which is done pneumatically by using Roots blowers.

Charging of kiln is one of the critical stages where Roots blowers are used. These blowers take normal atmospheric air at suction and compress it to the required capacity and the required pressure at discharge and supply it, so as to charge the kiln for the next process. The quality of these blowers should be excellent so that they work in the critical conditions of a cement manufacturing plant.

Since the lobes run within the casing with finite clearances, no internal lubrication is required. Thus, the air delivered is 100 per cent oil-free. These blowers deliver, practically a constant flow rate independent of the discharge pressure conditions. The flow rate is largely dependent on the operating speed.

These machines are also extensively used in applications such as pneumatic conveying, aeration, cement plants, water treatment plants for filter backwash, aquaculture, aeration etc. They are used as general utilities, more commonly where the distance is short and a large volume of air is required (during blending, aeration, fluidisation and conveying).

Selecting the correct blower model for such critical applications in a cement plant in alignment with the other equipment installed is the responsibility of the manufacturer. A quality product will always help in attaining overall optimum performance of the plant, say experts.

Conveyors
The other means of transport equipment in the cement manufacturing unit are conveyors. Some cement companies use conveyers to move these materials, for they are cost-efficient. Though pneumatic conveying lines are extremely maintenance-intensive and also susceptible to breakdown, some conveyor manufacturers have come up with pipe conveyers, the enclosed type of construction of which protects environment from material falling down and emissions. Due to its ability to navigate curves, considerably less transfer towers are required compared to other belt conveyors, resulting in cost savings.

Roller/belt and tubular/pipe conveyor systems are well known among user. But both of them require a lot of maintenance because of friction they generate due to movement of goods one a belt supported by rollers.

Friction-less conveyor
The latest technology is air cushion conveyor (ACC) system reduces friction in the system, thus, resulting in cost efficiency and movement of higher volume of materials.

"Air cushion lifts up the rubber belt, removing friction in ACC. It brings in several advantages – energy saving, environment-friendly and requiring minimal maintenance,"says Frank Wang, General Manager of Sagta Engineering, a shanghai, China, based consultancy company that is trying to introduce ACC systems in India. In a conventional belt conveyor, where belt is running on rollers, a number of rollers appear along it. "Basically the concept of ACC is very much similar to that of conventional belt conveyor, but the difference is there are no rollers in the new technology. Instead of rollers there are certain modules and on the surface of the modules there are a number of small holes through which pressurised air comes and keeps the belt afloat, so that the material loaded onto the conveyor belt moves on the airfill," says U.K. Mullick, Chief Consultant of Sagta in India, while explaining the concept further.

The majority of power consumption of a conveyor is for overcoming the frictional resistance of number of rollers present in the system. "If there are no rollers, then there is no friction, due to which the power consumption will come down drastically – estimated at 20-70 per cent, based on the length of the conveyor (longer the more)," Mullick added.

Even the lifespan of rubber belt used in the conveyor will increase manifold against its lifespan of 3-4 years in other conveyor systems. "To our surprise, the rubber belt of our first project where ACC was installed is still there even after 15 years, and no replacement needed anytime soon," says Wang. Thus, even though the innovative ACC system comes with no cost advantage in terms of initial installation, it has the ability to give operational advantage to the company installing it all through its life. Giving an inkling into the volume of power saving that can be derived with ACC, Mullick said, for a 15-km conventional conveyor power installation needed is 4,200 kW, while for ACC technology the installed capacity required is 2,500 kW.

However, ACC has its own limitations – it cannot carry material in sizes of over 50mm and cannot take a turn towards right or left, it has to be installed in a straight line. Hence the need for use of different types of conveyors, including conventional and pipe conveyors, if the route of the conveyor passes through hills and mountains.

– B.S. SRINIVASALU REDDY

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

FORNNAX Technology lays foundation for a 23-acre facility in Gujarat

Published

on

By

Shares

FORNNAX Technology, a leading manufacturer of recycling equipment in India, has marked a major milestone with the Groundbreaking (Bhoomi Pujan) ceremony for its expansive 23-acre manufacturing facility in Gujarat. Specialising in high-capacity shredders and granulators, FORNNAX is strategically positioning itself as a global leader in the recycling industry. The new plant aims to produce 250 machinery units annually by 2030, making it one of the largest manufacturing facilities in the world.
The foundation stone for this ambitious project was laid by Jignesh Kundaria, CEO and Director, alongside Kaushik Kundaria, Director. The ceremony was attended by key leadership members and company staff, signifying a new chapter for FORNNAX as it meets the growing demand for reliable recycling solutions. Speaking on the occasion, Jignesh Kundaria stated, “This marks a historic moment for the recycling sector. Our high-quality equipment will address various waste categories, including tyre, municipal solid waste (msw), cables, e-waste, aluminium, and ferrous metals. this facility will strengthen our global presence while contributing to India’s Net Zero emissions goal by 2070.”
FORNNAX is actively expanding its footprint in critical markets such as Australia, Europe and the GCC, forging stronger sales and service partnerships. The facility will house an advanced Production Department to ensure seamless manufacturing.

Continue Reading

Concrete

Decarbonisation is a focus for our R&D effort

Published

on

By

Shares

Dyanesh Wanjale, Managing Director, Gebr. Pfeiffer discusses the need to innovate grinding technologies to make the manufacturing process more efficient and less fuel consuming.

Gebr. Pfeiffer stands at the forefront of grinding technology, delivering energy-efficient and customised solutions for cement manufacturers worldwide. From pioneering vertical roller mills to integrating AI-driven optimisation, the company is committed to enhancing efficiency and sustainability. In this interview, we explore how their cutting-edge technology is shaping the future of cement production.

Can you tell us about the grinding technology your company offers and its role in the cement industry?
We are pioneers in grinding technology, with our company being based in Germany and having a rich history of over 160 years, a milestone we will celebrate in 2024. We are widely recognised as one of the most efficient grinding technology suppliers globally. Our MBR mills are designed with energy efficiency at their core, and for the past five years, we have been focused on continuous improvements in power consumption and reducing the CO2 footprint. Innovation is an ongoing process for us, as we strive to enhance efficiency while supporting the cement industry’s sustainability goals. Our technology plays a critical role in helping manufacturers reduce their environmental impact while improving productivity.

The use of alternative fuels and raw materials (AFR) is an ever-evolving area in cement production. How does your technology adapt to these changes?
Our vertical roller mills are specifically designed to adapt to the use of alternative fuels and raw materials. These mills are energy-efficient, which is a key advantage when working with AFR since alternative fuels often generate less energy. By consuming less power, our technology helps bridge this gap effectively. Our solutions ensure that the use of AFR does not compromise the operational efficiency or productivity of cement plants. This adaptability positions our technology as a vital asset in the industry’s journey toward sustainability.

What are some of the challenges your company faces, both in the Indian and global cement industries?
One of the major challenges we face is the demand for expedited deliveries. While customers often take time to decide on placing orders, once the decision is made, they expect quick deliveries. However, our industry deals with heavy and highly customised machinery that cannot be produced off the shelf. Each piece of equipment is made-to-order based on the client’s unique requirements, which inherently requires time for manufacturing.
Another significant challenge comes from competition with Chinese suppliers. While the Indian cement industry traditionally favoured our technology over Chinese alternatives, a few customers have started exploring Chinese vertical roller mills. This is concerning because our German technology offers unmatched quality and longevity. For example, our mills are designed to last over 30 years, providing a long-term solution for customers. In contrast, Chinese equipment often does not offer the same durability or reliability. Despite the cost pressures, we firmly believe that our technology provides superior value in the long run.

You mentioned that your machinery is made-to-order. Can you elaborate on how you customise equipment to meet the specific requirements of different cement plants?
Absolutely. Every piece of machinery we produce is tailored to the specific needs of the customer. While we have standard mill sizes to cater to different capacity requirements, the components and configurations are customised based on the client’s operational parameters and budget. This process ensures that our solutions deliver optimal performance and cost efficiency. Since these are heavy and expensive items, maintaining an inventory of pre-made equipment is neither practical nor economical. By adopting a made-to-order approach, we ensure that our customers receive machinery that precisely meets their needs.

The cement industry is focusing not only on increasing production but also on decarbonising operations. How does your company contribute to this dual objective, and how do you see this evolving in the future?
Decarbonisation is a key focus for our research and development efforts. We are continuously working on innovative solutions to reduce CO2 emissions and improve overall sustainability. For example, we have significantly reduced water consumption in our processes, which was previously used extensively for stabilisation. Additionally, we are leveraging artificial intelligence to optimise mill operations. AI enables us to monitor the process in real-time, analyse feedback, and make adjustments to achieve optimal results within the given parameters.
Our commitment to innovation ensures that we are not only helping the industry decarbonise but also making operations more efficient. As the cement industry moves toward stricter sustainability goals, we are confident that our technology will play a pivotal role in achieving them.

Can you provide more details about the use of digitalisation and artificial intelligence in your processes? How does this improve your operations and benefit your customers?
Digitalisation and AI are integral to our operations, enabling us to offer advanced monitoring and optimisation solutions. We have developed three distinct models that allow customers to monitor mill performance through their computer systems. Additionally, our technology enables real-time feedback from our German headquarters to the customer. This feedback highlights any inefficiencies, such as when a parameter is outside the optimal range,
and provides actionable recommendations to address them.
By continuously monitoring every parameter in real time, our AI-driven systems ensure that mills operate at peak efficiency. This not only enhances production but also minimises downtime. I am proud to say that our mills have the lowest shutdown rates compared to other manufacturers. This reliability, combined with the insights provided by our digital solutions, ensures that customers achieve consistent and efficient operations. It’s a game-changer for reducing costs and enhancing overall productivity.

Continue Reading

Concrete

Technology is the cornerstone of clinker cooling

Published

on

By

Shares

Madhusudan Rasiraju, Country Head, IKN India, talks about enhancing cement plant efficiency with energy-saving, reliable, and customised solutions while supporting sustainability through innovations like oxy-fuel plants and AFR adaptability.

Could you explain what IKN Engineering is, what the company specialises in, and share insights about your clinker cooling solutions?
IKN is a Germany-based company that specialises in providing advanced clinker cooling solutions to the cement industry. Our expertise lies in developing and supplying innovative cooling systems that focus on energy efficiency, durability and cost-effectiveness.
The clinker cooling process is a critical stage in cement production, as it significantly influences the energy efficiency of the entire plant. Our coolers are designed with cutting-edge technology to recuperate a substantial amount of heat from the clinker. This recovered heat is redirected back into the cement production process, enabling our customers to reduce their fuel consumption significantly. Moreover, IKN coolers are engineered for reliability. They are built to operate with minimal maintenance, which helps to lower operational costs and reduce downtime. By focusing on high performance and long-term reliability, we ensure that our solutions are both economically and environmentally beneficial.

How does IKN contribute to improving the efficiency of cement plant operations and supporting sustainability goals?
IKN plays a pivotal role in enhancing the operational efficiency of cement plants while aligning with global sustainability objectives. Historically, clinker coolers required frequent maintenance, with intervals as short as five to six months. This led to regular shutdowns, which disrupted operations and increased costs. With IKN’s advanced cooling solutions, cement plants can now operate their coolers for extended periods without significant maintenance. Our coolers are not only more reliable but also consume less power, which directly reduces energy costs. Additionally, the high heat recuperation efficiency of our systems ensures that less fuel is required for the cement-making process, contributing to a lower carbon footprint.
Sustainability is embedded in our solutions. By reducing energy consumption, optimising processes, and minimising maintenance, we help our customers achieve their operational goals while supporting their commitment to environmental stewardship.

What role does technology play in the clinker cooling process, and how does IKN leverage it to provide advanced solutions?
Technology is the cornerstone of clinker cooling and a driving force behind our innovative solutions at IKN. The cement industry’s needs are constantly evolving, and to stay ahead, we ensure our technologies remain dynamic and adaptable. We adopt a customer-centric approach, continuously collecting feedback from our clients to improve our systems. Every clinker cooler we supply is tailored to meet the specific requirements of the plant it serves. For instance, the physical layout, production capacity, and operational challenges of each facility are unique, and we ensure our solutions address these specific needs.
Moreover, our ongoing research and development efforts focus on enhancing reliability, improving heat recovery, and lowering energy consumption. By integrating the latest technological advancements, we make sure our coolers set new benchmarks in performance and sustainability.

Do you offer customised solutions for each cement plant, and how does the increasing use of alternative fuels (AFR) impact your clinker cooling solutions?
Absolutely, customisation is at the core of what we do at IKN. In the case of retrofits, every cooler is custom-designed to fit the specific layout and operational needs of the existing cement plant. For new installations, we collaborate closely with our clients to design coolers that are precisely sized and configured to meet their requirements.
Regarding alternative fuels (AFR), their increasing use in cement plants presents unique challenges. AFR often results in the production of finer clinker, which can be more difficult to handle during the cooling process. To address this, we optimise the operating parameters of our coolers, such as airflow density and cooler speed, to ensure they perform effectively with the type of clinker being produced. This adaptability ensures that our coolers remain efficient and reliable, even in plants using diverse and non-traditional fuels.

What challenges do you face in providing clinker cooling solutions, both from your operations and from the cement industry’s perspective?
Challenges are inevitable in any advanced technological field, and clinker cooling is no exception. One of the primary challenges we face is adapting to the changing demands of our customers. For example, frequent shifts in fuel types or the introduction of AFR can disrupt the cooling process. These changes often result in variations in clinker properties, requiring us to make adjustments to maintain optimal performance. Additionally, the grid surfaces in coolers may face increased wear and tear due to these changes. At IKN, we address such challenges by reinforcing the grid surfaces and fine-tuning our systems to handle these dynamic conditions.
From an industry perspective, there is an increasing emphasis on efficiency, sustainability, and cost reduction. Meeting these expectations while maintaining high performance is challenging, but it is a challenge we embrace through innovation, research, and collaboration with our clients.

What are your views on the net zero mission, and how is IKN contributing toward this goal?
The net zero mission is a vital initiative for energy-intensive industries such as cement, steel, and power. It requires a collective effort across the supply chain to achieve meaningful progress.
At IKN, we are committed to supporting this global goal. One of our key contributions is the development of oxy-fuel plants, which are designed to significantly reduce carbon emissions during production. We are also exploring innovative cooling methods, such as the use of nitrogen or other media, to further enhance sustainability. Currently, we have two oxy-fuel projects underway in Germany. These plants not only demonstrate our commitment to the net zero mission but also serve as examples of how advanced technology can drive sustainability in the cement industry. By focusing on durability, efficiency, and innovation, we help our clients reduce their environmental footprint while maintaining high operational standards.

– Kanika Mathur

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds