Environment
The per capita consumption of cement in India is less than 200 kg….
Published
14 years agoon
By
admin
"The per capita consumption of cement in India is less than 200 kg, while world average is around 500 kg …? so that is a very optimistic position"……And lot more. Stay on to know more as Pratap Padode and A Mohankumar speak to Anand K Jain, Technical Advisor, UltraTech Cement about the Indian cement industry.What role has technology played in environment-friendly packaging for the cement industry?Today environment – friendly packaging is the norm and technology has in this played a very important role. Cement is generally perceived by many as a polluting industry – mainly air pollution as it involves use of very fine material. Thus, it is necessary that such emissions are controlled during the production and packaging process. With new technologies, the emissions are reduced to the minimum, by installing automatic bag fillers, electrostatic precipitators, etc. Now to a reasonable extent, they are able to to have very clean air within and outside the cement plant. The International Standards for particulate emission have also come down from 150 mg normal per cubic metre to 50 mg per normal cubic metre. The Indian cement industry has geared up and is well equipped to comply with this standard – particularly the new plants have been following these norms The cement industry is poised to play a big role in improving the environment by utilising industrial wastes like fly ash, slag and municipal waste as a fuel in the kiln, even agriculture waste like rice husk and many other industrial wastes.What about comparisons with China?India is better than China as far as the quality, fuel and power consumption are concerned. It is only in terms of volume that China is ahead of India. For example, China last year consumed approximately 1,200 mt, whereas India’s consumption was around 220 mt. This is basically because they are investing large funds on infrastructure development – in housing and scale of growth is much higher in China. Their GDP is the second largest in the world, and has already crossed $5 trillion. India is only 1?? of their economy. Therefore their cement consumption is more. But as far as the technology parameter and quality is concerned, we are not lagging behind China.There is huge cost pressure from inputs – power, coal are now expensive. What is the scenario that is most likely to emerge in the near future?
It is true that input costs are going up. In terms of essentials, coal prices are now very high. In the recent past majority of the cement plants have set up their own captive power generation. Cement production is a continuous process and depending on grid power does not prove to be cost-effective as well as a very viable option. The second issue is availability of coal. Coal is one area which is definitely a matter of concern because on an average nearly 180-200 kg of coal is consumed to produce one tonne of clinker. The government is opening up coal blocks for private ownership and some of the companies are considering having their own colliery in India and abroad. Imported coal is also an options. Cement companies have to transport coal from eastern India to different locations. Pet coke can be used as an alternate fuel for the cement industry. Pet coke is a petroleum refinery by-product and it is used in the cement kiln for the burning process in lieu of coal. It also has high calorific value compared to coal. The refinery in Jamnagar in western India produces pet coke, which is being used by some.There is a trend to set up plant close to the primary source?Yes, it is a necessity. Clinker has to be produced where the limestone is available – it is known as the parent plant. So you should have your parent plant in an area where limestone is available. And once clinker is available, it can be transported to a thermal power plant where fly ash is available. Then the flyash and clinker can be grinded to drive the final product. From there, cement can be finally supplied to the market. This is an emerging trend.Coming to the grading of cement, now 53 grades is the standard for Bureau of Indian Standards, should a higher grade be brought in?In fact the 53 grade cement can produce a very high strength concrete. If you have to go for a higher grade of cement, then you need high grade limestone which is not available in many locations in India. So this is a major constraint. At the moment we do not think that a grade higher than 53 is really needed. Rather what is required is appropriate mix proportions to produce good quality of concrete, to optimise the use of not only the cement, but also of other cementitious material like fly ash, silica fume and slag. If these materials are blended in proper combination and added with a super plasticiser, a high quality and durable concrete can be produced without unnecessarily opting for a very high grade of cement.Your take on the future of ready mix concreteReady mix concrete has a bright future. There is no doubt because it has opened up a new vista in construction. People now have confidence in ready mix concrete even for very high grades like M50, M60. Hence it has opened up a new field for construction to use higher grades concrete. You can have any shape, any height, any span because good quality concrete from the ready mix plant, would be available to the end consumer. Unfortunately, people still compare ready mix concrete with site mix concrete. But the two products are different – the quality assurance and the characteristics of the concrete – what is produced at site and what is produced at the ready mix concrete plant are two different products. So if you pay little more money for ready mix concrete, it is value for money. Slowly people have started realising that if they want quality then they cannot compromise on the quality of concrete because the durability of the structure today mainly depends on the concrete. Ready mix concrete has seen phenomenal growth and when people realise that it is a vital component which enhances durability and the life of the structure, the price position will definitely improve.Do taxes pose a big challenge?
Yes they do, but still the main constraint is the availability of land within the urban area. If you take land on lease or you buy it, the cost is very high and that adds up to the input cost. Secondly, our towns and cities are very congested and the movement is very slow therefore the throughput of a transit mixer is very less and the transportation cost becomes very high. These are basically the main reasons. Lastly tax is definately a problem. Ready mix concrete has to pay the value added tax (VAT) while if you make at the job site there is no tax. So these factors increase the cost. Actually ready mix concrete is seen as an extension of the cement business and value addition; it is also helpful in many ways because ready mix concrete has been able to provide solutions for mega infra projects. Indirectly, due to availability of ready mix concrete, the cement consumption in the country has gone up.So what is the business like for ready mix concrete (RMC), when compared with the rest?Today, ready mix concrete commercial plants produce around 25 million cubic metre of concrete in India. Twenty five million cubic metre consumes around 8-10 mt of cement which is still very low. If we are producing around 200 million tonne of cement then only about 5 per cent goes into commercial ready mix concrete. In many of the developed countries this figure is around 50-55 per cent. So as you can see, in India this industry still has huge potential to grow. Further, the environmental norms have become stricter, size of the projects have increased, and individual houses are less favoured, particularly in metros and tier 2 cities because people are opting for flats. Now, the size of the projects have increased and the conventional methods of making concrete at the site has lost relevance. Even in tier 2 and tier 3 cities like Kolhapur, Ludhiana, Nashik, Vishakhapatnam, Vijayawada, Mysore, etc all these places are responding positively to the ready mix concrete. Ready mix concrete indeed has a bright future.What about the pricing factor, it seems to be on the higher side?Ready mix concrete is a very fragmented type of industry because the entry barriers are low and anybody can set up a ready mix concrete plant. Basically price positioning is not evident because there are too many players in the unorganised sector and the statutory compliance is almost negligible. These unorganised players offer products to end consumers at discounted prices or at a lower price. I am sure, as the industry grows and construction booms, people will realise that quality is more important than price alone.With 70 per cent of demand coming from the housing market which has been growing 25-30 per cent – last year it was 15 per cent – how do you see the demand from this segment? Will it be the driving force? What will be the share of infrastructure?Housing will for sometime be the demand driver for cement. But infrastructure projects are also coming up in a big way, whether it is power or transport, or irrigation, dedicated corridors or urban infrastructure in metros. I think the share of the infrastructure projects will go up and housing may come down. I believe it has already come down to about 55 per cent. There is scope for it to reduce even further.And what about infrastructure?The investment in infrastructure is continuously increasing, Infrastructure has a wide spectrum as you know. If you consider an infrastructure project, you can also take in rural areas like the water supply, connectivity, PM Gramin Sadak Yojana and sanitation. Then there are small irrigation and medium size irrigation projects. If we take into account all these investments in infrastructure projects, demand for cement will grow substantially, maybe upto 30-35 per cent.Could you tell us more about the new technologies in this sector? Do price or lack of awareness hinders use of new technology?There is lot of emphasis to reduce the input cost and to increase productivity as well as to optimise transportation cost. So the cost reduction should be in terms of power consumption, fuel consumption, the heat recovery and the transportation cost. Being a bulky material, the transportation cost of cement is very high, sometimes even 30 per cent of the total delivered cost. So if you have the main unit that produces clinker and bulk clinker can be transported to the other place by doing so, the cost of transportation would be comparatively low as transportation cost of clinker is lower compared to cement. Then if you add up fly ash where it is available, the cost will still come down. These efforts would reduce the ultimate cost of cement. Transportation is one area, distribution is another. Instead of storing cement in warehouses it should go directly to the end consumer, so that it reduces cost of storage and inventory cost and there is no need to hold it for longer periods and fresh cement can be made available to the consumers. There are other areas also. Major consumption centres of cement are metros like Mumbai, Delhi, Hyderabad, Bengaluru, Chennai and Kolkata. In metros, you can set-up bulk terminals and bring cement from the parent plant as loose cement in specially designed wagons and pack it and supply. The transportation cost can be reduced and availability can also increase. These are some of the areas, where cement industry is already taking the right steps.Is there adequate availability of machinery or do we have to rely on imports?Cement plants are largely indigenised. Only some critical components and electronic controlled systems, are still imported. All the fabrication works and many components are produced in India. In total, almost 70-75 per cent is totally indigenous.How do you see the relationship between demand and supply of cement?The supply may be higher for a short duration but the demand and supply of cement will shortly match. Thirty million tonne of production capacity is expected this year. Cement industry like any other major commodity business is cyclic in nature When the capacity increases, it overtakes the demand, and when the demand increases, over takes the supply. During that period, more plants are set up.This has always happened and there is nothing new. But still, the per capita consumption of cement in India is less than 200 kg, while the world average is around 500 kg, therefore we are far behind. In case of China, it is over 1,000 kg per head, – that is a very optimistic position in for cement. Fortunately there is no alternate product to replace cement since it is still the cheapest and best material, that serves as a binder.What are the changes you expect in the coming budget?The cement industry keeps on presenting their demands for reducing taxes to the government. The taxes should be reduced on cement. The excise duty on steel is 4 per cent but for cement it is still around 10-12 per cent. We expect that cement should be in the same category as steel. At least if the excise duty is brought at par with steel, it will give a lot of relief to the end consumer.
You may like

The Indian cement industry has reached a critical juncture in its sustainability journey. In a landmark move, the Ministry of Environment, Forest and Climate Change has, for the first time, announced greenhouse gas (GHG) emission intensity reduction targets for 282 entities, including 186 cement plants, under the Carbon Credit Trading Scheme, 2023. These targets, to be enforced starting FY2025-26, are aligned with India’s overarching ambition of achieving net zero emissions by 2070.
Cement manufacturing is intrinsically carbon-intensive, contributing to around 7 per cent of global GHG emissions, or approximately 3.8 billion tonnes annually. In India, the sector is responsible for 6 per cent of total emissions, underscoring its critical role in national climate mitigation strategies. This regulatory push, though long overdue, marks a significant shift towards accountability and structured decarbonisation.
However, the path to a greener cement sector is fraught with challenges—economic viability, regulatory ambiguity, and technical limitations continue to hinder the widespread adoption of sustainable alternatives. A major gap lies in the lack of a clear, India-specific definition for ‘green cement’, which is essential to establish standards and drive industry-wide transformation.
Despite these hurdles, the industry holds immense potential to emerge as a climate champion. Studies estimate that through targeted decarbonisation strategies—ranging from clinker substitution and alternative fuels to carbon capture and innovative product development—the sector could reduce emissions by 400 to 500 million metric tonnes by 2030.
Collaborations between key stakeholders and industry-wide awareness initiatives (such as Earth Day) are already fostering momentum. The responsibility now lies with producers, regulators and technology providers to fast-track innovation and investment.
The time to act is now. A sustainable cement industry is not only possible—it is imperative.
Concrete
It is equally important to build resilient building structures
Published
3 weeks agoon
May 13, 2025By
admin
Manoj Rustagi, Chief Sustainability Officer, JSW Cement, discusses how the adoption of ‘green’ practices in cement manufacturing could reshape the future of sustainable construction worldwide.
Cement is one of the most carbon-intensive materials in construction — but innovation is changing that. As sustainability becomes central to infrastructure, green cement is emerging as a viable low-carbon alternative. In this detailed interview with Manoj Rustagi, Chief Sustainability Officer, JSW Cement, we explore what makes cement ‘green’, its performance, and its future. From durability to cutting-edge technologies, here’s a look at the cement industry’s greener path forward.
What exactly is green cement, and how does it differ from traditional cement?
At this point in time, there is no standard for defining green cement. A very simple way to understand ‘Green Cement’ or ‘Low Carbon Cement’ is the one which emits much lower greenhouse gasses (GHG) compared to conventional cement (Ordinary Portland Cement – OPC) during its manufacturing process.
In India, there are many existing BIS Standards for different types of cement products. The most common are OPC; Portland Pozzolana Cement (PPC); Portland Slag Cement (PSC) and Composite Cement (CC). While OPC emits maximum GHG during its manufacturing (approx 800-850 kg CO2/MT of OPC), PSC emits least GHG (approx 300-350 kg CO2/MT of PSC). As PSC is having close to 60 per cent lower CO2 emission compared to OPC, it is the greenest cement available in the Indian market.
There is already work happening at the central government level to define green cement, like it has been recently done for green steel, and hopefully in the next one year or so the standard definition would be available.
What are the key environmental benefits of using green cement?
The primary environmental benefits of green or low-carbon cement are:
- Reduced CO2 emissions
- Lower energy and power consumption
- Conservation of limestone and fossil fuels
- Utilisation of industrial by-products
- (slag/fly ash)
Can green cement match the durability and strength of conventional cement?
PSC is much more durable than any other type of cement product. It has lower heat of hydration; the strength keeps on improving with time; and it has much higher resistance to chloride and sulphate attacks. Most of the concrete failures are because of chloride and sulphate attacks, which corrode the steel reinforcements and that is how cracks get initiated and propagated resulting in eventual concrete failures. For coastal applications, marine structures, seaports, and mass concreting, PSC is most suitable. Due to the intrinsic durability characteristics of PSC; it is a green and resilient cement product.
Usually everyone talks about lower GHG emissions, but it is equally important to build resilient building structures that can withstand natural calamities and have much longer lifespans. PSC is one cement type that is not only lowest in CO2 emissions but at the same time offers durability characteristics and properties (RCPT, RCMT, Mercury Intrusion, long term strength and flexural strength), which are unmatched.
What innovative technologies are being used to produce green cement?
To further reduce the CO2 emissions in the manufacturing process; some of the innovative technologies which are commercially viable are:
- Alternative raw materials: Use of steel slag, red mud and other industrial by-products to substitute limestone
- Alternative fuels: Use of RDF/MSW, pharmaceutical wastes like biomass etc., to substitute coal/pet-coke
- Waste Heat Recovery (WHR): Power plants to generate electricity from waste heat
- Renewable energy: Solar and wind energy instead of state grid
How cost-effective is green cement compared to traditional options?
All of the above innovative technologies do not increase the cost of manufacturing. There are some future technologies like Carbon Capture, Utilisation and/or Storage (CCUS), which are not commercially viable and would increase the cost of cement. As such, the options available today for low-carbon cement (like PSC) are not expensive.
The Government of India has recently notified Indian Carbon Market (ICM), which also includes the cement sector. Hopefully, this would help progressive companies to further reduce their carbon footprint.
What challenges does the industry face in adopting green cement on a large scale?
There is absolutely no incentive/motivation for builders/contractors to use green cement products and therefore there is practically no demand. While the industry has taken many steps. In fact the Indian cement industry is believed to be most energy efficient globally and has approximately 10 per cent lower GHG emissions compared to global average. But due to lack of awareness and lack of performance based standards; the demand for low carbon cement or green cement has not picked up in India.
Are governments and regulators supporting the shift to green cement?
In India, in the last couple of years, there have been many policy interventions which have been initiated. One of them, namely the carbon market is under notification; others like Green Public Procurement, Green Cement taxonomy and National CCUS Mission are in the advanced stages and are expected to be implemented in the next couple
of years.
How do you see the future of green cement in global construction?
Globally the built environment accounts for 40 per cent CO2 emissions; and the maximum embodied emissions come from cement and concrete. There is a lot of innovation happening in cement, concrete and construction. Basically, how we build and what material we use. And this is to do with both carbon mitigation as well as adaptation as the built environment is so important for sustainable living. Precast and pre-engineered buildings/structures, 3D concrete printing, ultra high performance concrete, digital and AI/ML interventions in construction, admixtures/improved concrete packing; and circularity in cement manufacturing are some examples. Low-carbon cement or green cement eventually will lead to ‘Net Zero CO2 emission’ cement, which would enable a ‘Net-Zero’ built environment that is needed for long term sustainability.

Milind Khangan, Marketing Manager, Vertex Market Research, looks at how India’s cement industry is powering a climate-conscious transformation with green cement at its core, aligning environmental urgency with economic opportunity.
The cement industry produces around eight per cent of the world’s total CO2 emissions. Process emissions, largely due to limestone calcination, contribute 50 to 60 per cent of these emissions and produce nearly one ton of CO2 per ton of cement produced.
India is a leading cement producer with an installed capacity of around 550 million tons (MMT) as of 2024. As the Government of India advances toward its 2070 net-zero target, green cement is becoming a major driver of this shift toward a low-carbon economy. It offers environmental sustainability as well as long-term operating efficiencies at scale. With the fast-paced urbanisation and infrastructure development across the nation, the use of green cement goes beyond environmental imperatives; it is also a strong strategic business opportunity. Indian cement players are some of the most sustainable and environmentally conscious players in the world, and indigenous cement demand in India is estimated to grow at a CAGR of 10 per cent until 2030.
Innovating sustainably
Green cement is an umbrella term that includes multiple advanced technologies and processes aimed at minimising the environmental footprint, and CO2 emissions of conventional cement manufacturing. This shift from traditional practices targets minimising the carbon footprint throughout the whole cement manufacturing process.
- Clinker substitution: Substitution of high-carbon clinker with supplementary cementitious materials (SCMs) in order to considerably lower emissions.
- Alternative binders: Developing cementitious systems that require minimal or no clinker, reducing reliance on traditional methods.
- Novel cements: Introducing new types of cement that depend less on limestone/clinker, utilising alternative modified processes and raw materials.
- Energy efficiency and alternative fuels: Optimising energy utilisation in production and substituting fossil fuel with cleaner alternatives coming from waste or biomass.
- Carbon capture, utilisation, and storage (CCUS): Trapping CO2 emissions at cement plants for recycling or geological storage.
Drivers and strategic opportunities
Robust infrastructure development pipeline: The government’s continued and massive investment in infrastructure (roads, railways, housing, smart cities) generates huge demand for cement. Crucially, there is a growing preference and sometimes direct requirement under public tenders for sustainable building materials, including green cement, which is giving a significant market stimulus.
India’s national climate commitments (NDC and Net Zero 2070): India’s commitments under the Paris Agreement (NDCs) and the long-term goal of achieving Net Zero emissions by 2070 have set a clear direction for industrial decarbonisation. This national strategy necessitates action from high-emitting sectors such as cement to adopt green cement technologies and carbon-reducing innovations across the construction value chain. Notably, the Indian cement industry alone is expected to generate nearly 400 million tonnes of GHG emissions by 2030.
Regulatory mandates for fly ash utilisation: The Ministry of Environment, Forest and Climate Change (MoEFCC) has released a number of binding notifications that promote the use of fly ash from thermal power plants. These guidelines seek to reduce environmental impact by enhancing its extensive application in cement production, particularly in Portland Pozzolana Cement (PPC). Fly ash acts as a pozzolanic material, reacting with calcium hydroxide to produce cementitious compounds, hence decreasing clinker consumption, a high-energy component contributing to high CO2 emissions. Through clinker substitution facilitation, such mandates directly enable the production of low-carbon green cement.
Promotion and utilisation of blast furnace slag: Steel plant slag utilisation policies provide a ready SCM for manufacturing Portland Slag Cement (PSC). This is advantageous in terms of the supply of another key raw material for green cement manufacturing.
Increased demand due to green building movement
The larger adoption of green building codes and certification systems such as GRIHA and LEED India by builders and developers promotes the use of materials with reduced carbon content. Cement products with a higher SCM content or produced through cleaner processes are preferred. A step in this direction was achieved in October 2021 when Dalmia Cement achieved the distinction of being the first Indian cement producer to be granted the Green Product Accreditation of GRIHA.
The Indian industry is actively investing in R&D for new binders such as geopolymer cement, alkali-activated materials and limestone calcined clay cement (LC3). Research institutions including IIT Madras are collaborating with industry to scale these technologies. Although Carbon Capture, Utilisation, and Storage (CCUS) is still at a nascent stage in India, it represents a potential frontier for long-term decarbonisation in the cement sector.
The MoEFCC has published draft regulations under the Carbon Credit Trading Scheme (CCTS), 2023, in the form of the Greenhouse Gas Emission Intensity Target Rules, 2025. The draft notification requires 186 cement units in India to lower their GHG emission intensity from FY 2025-26. Non-compliant manufacturers will have to purchase carbon credit certificates or face penalties, creating a clear regulatory and financial incentive to adopt cleaner technology. The CCTS will promote technology and practice adoption that reduces the carbon intensity of cement manufacturing, potentially resulting in the use of green cement and other low-carbon substitutes for cement.
India’s leading cement companies like UltraTech, Shree Cement, and Dalmia Bharat have made science-based targets and net-zero emissions pledges in line with the GCCA 2050 Cement and Concrete Industry Roadmap. These self-declarations are hastening the shift towards clean cement manufacturing technology and renewable energy procurement.
Challenges and complexities in India’s green cement transition
Economic viability and cost challenges: High production costs associated with low-carbon cement technologies remain a significant hurdle. The absence of strict carbon pricing and poor financial incentives slow down rapid uptake on a large scale. Although green cement is currently costlier than conventional options, greater market adoption and scale-driven efficiencies are expected to progressively narrow this price gap, enhancing commercial viability over time. As these technologies mature, their broader deployment will become more feasible.
Inconsistent supply chain of SCMs: A dependable supply of high-quality Supplementary Cementitious Materials (SCMs), such as fly ash and slag, is crucial. But in the course of decarbonisation of India’s power generation and industry sectors, SCMs reliability and availability may become intermittent. Strong, decentralised logistics and material processing units must be developed in order to provide uninterrupted and economical SCM supply chains to cement producers.
Gaps in technical standards and performance benchmarks
Although PPC and PSC are well-supported by existing BIS codes, standards for newer materials such as calcined clay, geopolymer binders and other novel SCMs require timely development and updates. Maintaining steady performance, lasting robustness, and usage dependability in varying climatic and structural applications will be key to instilling market faith in other forms of cement formulation. Market stakeholders are also supporting separate BIS codes for the green cement sub-categories for helping to build and sustain standardisation and trust.
Scaling of emerging technologies
Scaling promising technology, especially CCUS, from pilots to commercial scales within the Indian context involves significant investment of capital, technical manpower, and a facilitating regulatory environment. The creation of infrastructure for transportation and long-term storage of CO2 will be critical. While these facilitative systems are implemented, cement makers will be well-placed to decarbonise their operations and achieve national sustainability goals.
The way ahead
The Indian cement industry is poised to enter a revolutionary era, where decarbonisation and sustainability are at the heart of expansion. Industry players and the government need to join hands in an integrated manner throughout the cement value chain to spearhead this green revolution. Cement companies must embrace new technologies to lower the emissions like the utilisation of alternative fuels like biomass, industrial wastes, and recycled materials and utilisation of waste heat recovery systems to make energy efficient. The electrification of logistics and kilns, investigation of high-heat alternative products, and CCUS technology investments must be made to decarbonise production. Sophisticated additives such as polymers can improve cement performance with reduced environmental footprint.
At the policy level, the government has to introduce support measures such as stable carbon pricing, tax relief, viability gap funding, and initiatives such as the PLI scheme to encourage the use of renewable energy in cement manufacturing. Instruments such as carbon contracts can stabilise carbon credit prices and reduce market risk, encouraging investment in low-carbon technologies. Updating BIS standards for newer green cement formulations and SCMs is also critical for market acceptance and confidence. Green cement mandates in public procurement and long-term offtake contracts have the potential to generate stable demand, and green financing windows can guarantee commercial viability of near-zero carbon technologies. Cement greening is not a choice, it is a necessity for constructing a climate-resilient, sustainable India.
About the author:
Milind Khangan, Marketing Manager, Vertex Market Research, comes with more than five years of experience in market research and lead generation. He is responsible for developing new marketing plans and innovations in lead generation, having expertise in creating a technically strong website that generates leads for startups in market research.

Cement demand to rise 7% in FY26

India Sets Up First Carbon Capture Testbeds for Cement Industry

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Holcim UK drives sustainable construction

Cemex invests in AI optimisation through OPTIMITIVE

Cement demand to rise 7% in FY26

India Sets Up First Carbon Capture Testbeds for Cement Industry

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Holcim UK drives sustainable construction
