Connect with us

Concrete

New Concepts in Material Handling

Published

on

Shares

The cement industry can adopt newer material handling concepts with the help of a few innovations. Jai Gupta explores the new material handling ideas available and how these can be implemented.

The Indian cement industry has witnessed rapid growth in the past two decades. The overall production capacity of several sectors has doubled or even quadrupled over this period. Such rapid growth has posed several challenges for the industry, some of which are:

  • The conventional?easy to access? locations are no more available. New projects are forced to go for difficult-to-access locations from where material movements are difficult.
  • Land is gradually becoming a scarce resource. The industry is facing difficulties in land availability/ acquisition, and is hence being forced to go away from the markets or is being forced to manage in a limited area.
  • Unit sizes are becoming larger to harness economies of scale. Such enlargement in size is forcing the industry to market its products in larger areas.
  • With specific reference to the cement industry, growing demands and need of fly ash-based PPC production has forced many industry players to set up grinding units close to thermal power plants for fly ash consumption. As these thermal power plants are generally located closer to densely populated areas, space is always a constraint and hence they cannot develop good infrastructure for rail/road movement of material.

All the issues enumerated above are putting more and more pressure on the logistics of material movement. As material transportation is a sizeable portion of the total cost of production, any gains or reduction in cost of material movement could help the industry greatly.
Due to the needs of high capacity material movement at fast pace and inadequacy of road networks in remote areas, the industry?s reliance on rail transportation has substantially increased. Some good ideas have been implemented, relating to material movement through rail routes. These concepts have been successfully employed by Holtec in cement as well as other industries, and could help the industry in optimising expenses on material handling.

New Concepts in Material Handling
i.In-motion loading of material in railway rakes
ii.Movable wagon loader feeding stationary rakes
iii.Use of bottom discharge wagons for transport and its easy and fast unloading iv.Use of wagon shifters to substantially reduce the area required for the installation of a wagon tippler.

In-Motion Loading of Material in Railway Rakes
For majority of the industries requiring bulk material transportation, loading is usually done through either multiple overland hoppers constructed on top of the railway tracks, or manually through pay loaders. The usual time taken for one complete rake varies from three-six hours depending upon the arrangement or equipment employed. More number of hoppers or pay loaders can reduce the time taken; however, they add to certain other issues, such as:

  • Heavy to very heavy civil construction
  • More number of operators
  • Dust nuisance, spillages, material wastage and degradation etc.
  • With a rapid loading system, the entire rake can be loaded in about 60-80 minutes, from a single discharge point.

What is Rapid Loading?
In rapid loading of material, material is loaded on a rake, while the railway rake is in motion. One silo (of about one full rake capacity) is constructed on top of the rail track. Below the hopper, another small hopper is provided on load cells, which can accommodate about one wagonload of material. The above two hoppers are connected through hydraulic gates and a large chute, so that within seconds, material gets transferred from the main hopper to the pre-weigh hopper (mounted on the load cell).
Before a rake arrives, the silo is filled, so that fast material loading on the rake does not get disturbed. In the beginning, the load cell hopper is filled with pre-weighed material. As soon as the wagon comes in position, the loading starts and by the time it crosses, the complete wagon is loaded. During the period of wagon change, the pre-weigh hopper again receives the material from the main hopper, so that by the time another wagon comes into position, it is ready with the material. During this entire operation, the railway rake moves at the speed of about 0.6 to 0.7 km/hr. That means a full railway rake of about 650 m length is likely to get loaded in about one hour.
The majority of the collieries in India have been using the rapid loading system for coal rake loading.
Adopting a similar concept, Holtec designed a rapid loading system for lignite. As the system was designed for lignite, it was substantially different from the usual rapid loading system. However, it has been performing very successfully for the last 10-12 years. At this location, a rake of about 40 wagons is being loaded in about 45 minutes. Although the system is located close to a densely populated area, owners do not face any difficulties in operation as the process generates negligible dust. The material filling and closing is done through hydraulic gates, and wagon positioning is sensed through the proximity switches. A little bit of maintenance and care in operation is enough to keep the system spillage free.
At this location, there were several constraints such as poor soil bearing capacity, low water table, limited execution period, etc. Hence, while designing the system, three small silos were constructed to store one rake load of material, rather than a single hopper. A single hydraulic system was considered with three chutes below each of the silos, without affecting the investment cost. Underground construction was reduced to a minimum, and as lignite is light, no pre-weigh hopper was installed. The arrangement as installed for lignite loading has been depicted in Fig.-1.Benefits
The conventional system of rail loading requires three to six hours for loading of one complete rail rake, whereas with rapid loading system, the entire loading operation for one rake could be completed in about one hour. Assuming average savings of three hours per rake, we may save about 2,000 rake-hours annually, for a handling of about 2 million tonnes per annum (MTPA) capacity. Such faster movements help in better utilisation of rakes, especially if the company owns the rakes.

  • The total investment required for rapid loading is substantially lower as compared to conventional systems.
  • Reduced number of operators and attendants.
  • Dust nuisance, material wastage and degradation are substantially reduced.

Prerequisites
For the hauling of railway rake at a constant speed of 0.6 to 0.7 km/hr, creep drives need to be installed on the locomotive. As the normal locomotives from railways do not have this facility, the plant will have to maintain its own locomotive for haulage of the railway rake.Movable Wagon Loader to Load Stationary Rake
The proposal of rapid loading of railway rake is a good option, but it essentially needs full rake space on either side of the loading point. Secondly, it also needs a dedicated loco which can pull the complete rake at a fixed speed.
Recently for a project, the available land was insufficient to go ahead with a rapid loading system. Also, the client was not inclined to go for the purchase of loco. Hence, we looked for alternate options and came out with a solution of movable wagon loader which can load the rake while on the move.
The wagon loader is generally placed in the centre and on its either side, rail tracks are constructed so that two full rakes can be placed on either side. The wagon loader is fed by a stacking conveyor and has a reversible boom conveyor for feeding the wagons on both the tracks as per requirements.
The wagon loader capacity can be in the range of 1,500-2,000 tph without any difficulty. The wagon loader is provided with a diversion chute at the outlet, which is designed in such a way that it diverts the material into the next wagon, at the junction point. After certain travel, it returns back to the earlier discharge point.
As the performance of the equipment largely depends upon consistent feeding of material, we need to either have a dedicated storage with some positive discharge equipment, or connection is made with consistent feed from the existing storage itself.
The speed of the wagon loader is controlled with the material on the conveyor. With capacity variations in feed, loader speed is adjusted automatically. As the material feed to the wagon is gradual, we get a smooth filling to the wagon. The smoother the filling, lesser is the dust nuisance. For the materials conducive to water spray, a foggy water spray ring can be provided around the discharge chute so that the nuisance dust generation can be further reduced. A few typical arrangements of wagon loaders are shown in Pic-1. Benefits
Conventional rail loading/rapid loading requires approximately 1.5 km of rail tracks for the loading of a complete rail rake in one go. With the proposed arrangement for loading of rail rake, only about 800 m of rail track length is required. In many circumstances, rail track length is a constraint and this solution can immensely help.
The loading time of a rake can be within two hours, which is better than the conventional system, and still saves about two hours of loading time per rake. Expected annual savings on rail rake hours will be about 1,400 hours, for a handling of about 2 MTPA capacity. Such faster movements help in better utilisation of rakes, especially if the company owns them.

  • The total investment required is low. It does not require any on-track storages.
  • Reduced number of operators and attendants.
  • Dust nuisance, material wastage and degradation is substantially reduced.

Use of Bottom Discharge Wagons for Material Transport and Its Easy Unloading Traditionally, majority of the industry has been using normal BOX/BOXN type of wagons for transportation of various goods. For the unloading of these wagons, wagon tipplers are installed through which these wagons are unloaded. As the Railways allows seven hours of free time for mechanised unloading, wagon tipplers were typically designed to unload a full rake of 58 wagons in approximately four-five hours (i.e., 12-15 wagons unloading per hour).

As the Railways wishes to go for longer rakes with larger capacity wagons, in recent years RDSO has released certain new guidelines. According to these guidelines, all new installations (installed after November 2010) shall take into consideration larger wagon size and unloading speed shall be increased to about 25 wagons per hour. As per the new designs of wagon tipplers, size of wagon tippler, its civil construction requirements and capacities of the material handling equipment have substantially increased.

As such, installation of a wagon tippler and associated auxiliaries was expensive, and recent enforcement from Railways, has further escalated the cost of installations of the wagon tippler and its associated auxiliaries.

As against BOXC and BOXN type of wagon allocated to the industry, power plants are allocated bottom discharge wagons (BOBRN), which can be emptied through pneumatic gates installed below the wagons. For the discharge of such wagons, thermal power plants install long track hoppers with plough feeders. This is again quite an expensive arrangement. As against normal track hoppers, Holtec designed a simple but effective system for lignite unloading in 2002, which is running successfully since then.

BOBRN is an open hopper car with rapid (pneumatic) bottom discharge doors, air-braked. BOBRN and BOBR are most often used for carrying coal to thermal power plants, and also for ore, stone, track ballast, etc. Each wagon holds some 60 tonnes of coal loaded from top and unloaded from bottom by means of the pneumatically operated doors. The contents can be discharged completely in about 15 seconds. Based on the success of earlier design system for lignite, Holtec has designed two such systems – one for multiple materials such as coal, copper concentrates and rock phosphate, and another for coal. The system designed for coal has been operational since last year.

Handling multiple materials from a single track hopper is usually a challenge. Secondly, some of these materials are fine and difficult to flow. Care has been taken while designing the system.

The proposed wagon unloading system is quite simple, with underground hoppers and apron feeder installed for each wagon unloading track hopper. Typically, about seven to eight minutes is required to unload one set of wagons, which includes wagon placement, connection of compressed air and unloading. If the system is designed with four hoppers, approximately two hours are sufficient to empty out a complete rake of 58 wagons. With more number of unloading hoppers, better speed of emptying can be achieved. The system requires shore compressed air arrangement, which needs to be connected to the wagons, and with one stroke, the complete wagon gets emptied in a matter of seconds.

A general arrangement of track hopper has been shown in Fig.-1 and Fig.-2. If the Railways is approached to provide such wagons to other industries as well, the entire process of material unloading becomes simpler and cost effective. The system proposed is quite simple, effective, fast and economical (not only for installation but also for operation).

Expected benefits
The conventional system of unloading (wagon tippler) requires about four-five hours for unloading of one rake, whereas with the proposed arrangement, the entire unloading operation for one rake could be completed in about two hours. This three-hour saving on one rake could result into substantially large annual savings, considering material movement by bottom discharge wagons.
The total investment required for the proposed system will be lower as compared to the wagon tippler, especially of new design (G-33, Rev-01 May 2010).
Reliability of the system will be much better as compared to the wagon tippler.
Dust nuisance substantially reduces as compared to the conventional systems.

Prerequisites
Initially, it could be difficult for the industry to switch over to bottom discharge wagons, as the Railways has limited quantity of such wagons, but gradually they need to switch over. As many industry players are interested to go for their own wagons, it could be better to go for bottom discharge wagons rather than going for conventional BOXC/BOXN wagons.

Use of Wagon Shifters
As we all know, land for the industry is gradually becoming a scarce resource. It becomes difficult to buy a large piece of land just for the smooth operation of a wagon tippler. For any industrial unit intending to install a wagon tippler, a large strip of land is needed to be bought just to provide sufficient space (equivalent to one railway rake length) on either side of the wagon tippler.

In some cases, we have noticed that the entire production unit needs about 5 hectares of land, whereas about 7.5 hectares of land needs to be acquired only for the necessary rail installation for smooth functioning of the wagon tippler, that too in a very typical plot size of 50 m x 1500 m. In our recent projects, we have faced a lot of problems on this account.

To tackle this issue, the wagon traversers are proposed and are being installed in one of Holtec?s projects.

After the wagon is unloaded on wagon tippler, the sidearm charger places the empty wagon on a traverser table. The wagon is shifted to another rail track (exit track) through a wagon traverser, where the pusher ejects the empty wagon from traverser to exit track. The enclosed arrangement drawing and photograph shows the functioning of a wagon traverser.

The wagon shifter works at the same speed as the wagon tippler and both these equipment work in tandem. This way the space requirement for the rail tracks reduces to almost half. However, one parallel rail track needs to be constructed besides the track for removal of wagons.

Expected benefits
Savings in land cost and veritable size of plot. Benefits of wagon traverser are usually case specific, and in some cases, its inclusion could help the unit greatly.

Conclusion
Development in material handling system is a dynamic process and an emerging area of research. In the view of definition of a project -?completion of a unique activity in a specific time, cost and scope?- the selection of material handling system has become extremely imperative.

We can conclude that adoption of a new material handling concept can:

  • Reduce the investment cost and handling time
  • Reduce the number of equipment and dust generation
  • Make the system more reliable.

About the authorJai P Gupta is Chief General Manager at HOLTEC Consulting Private Limited, and has been associated with the Indian cement industry for almost 35 years. The author has employed fresh concepts for handling of bulk material in cement as well as other industries, with equal ease and success.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

FORNNAX Appoints Dieter Jerschl as Sales Partner for Central Europe

Published

on

By

Shares

FORNNAX TECHNOLOGY has appointed industry veteran Dieter Jerschl as its new sales partner in Germany to strengthen its presence across Central Europe. The partnership aims to accelerate the adoption of FORNNAX’s high-capacity, sustainable recycling solutions while building long-term regional capabilities.

FORNNAX TECHNOLOGY, one of the leading advanced recycling equipment manufacturers, has announced the appointment of a new sales partner in Germany as part of its strategic expansion into Central Europe. The company has entered into a collaborative agreement with Mr. Dieter Jerschl, a seasoned industry professional with over 20 years of experience in the shredding and recycling sector, to represent and promote FORNNAX’s solutions across key European markets.

Mr. Jerschl brings extensive expertise from his work with renowned companies such as BHS, Eldan, Vecoplan, and others. Over the course of his career, he has successfully led the deployment of both single machines and complete turnkey installations for a wide range of applications, including tyre recycling, cable recycling, municipal solid waste, e-waste, and industrial waste processing.

Speaking about the partnership, Mr. Jerschl said,
“I’ve known FORNNAX for over a decade and have followed their growth closely. What attracted me to this collaboration is their state-of-the-art & high-capacity technology, it is powerful, sustainable, and economically viable. There is great potential to introduce FORNNAX’s innovative systems to more markets across Europe, and I am excited to be part of that journey.”

The partnership will primarily focus on Central Europe, including Germany, Austria, and neighbouring countries, with the flexibility to extend the geographical scope based on project requirements and mutual agreement. The collaboration is structured to evolve over time, with performance-driven expansion and ongoing strategic discussions with FORNNAX’s management. The immediate priority is to build a strong project pipeline and enhance FORNNAX’s brand presence across the region.

FORNNAX’s portfolio of high-performance shredding and pre-processing solutions is well aligned with Europe’s growing demand for sustainable and efficient waste treatment technologies. By partnering with Mr. Jerschl—who brings deep market insight and established industry relationships—FORNNAX aims to accelerate adoption of its solutions and participate in upcoming recycling projects across the region.

As part of the partnership, Mr. Jerschl will also deliver value-added services, including equipment installation, maintenance, and spare parts support through a dedicated technical team. This local service capability is expected to ensure faster project execution, minimise downtime, and enhance overall customer experience.

Commenting on the long-term vision, Mr. Jerschl added,
“We are committed to increasing market awareness and establishing new reference projects across the region. My goal is not only to generate business but to lay the foundation for long-term growth. Ideally, we aim to establish a dedicated FORNNAX legal entity or operational site in Germany over the next five to ten years.”

For FORNNAX, this partnership aligns closely with its global strategy of expanding into key markets through strong regional representation. The company believes that local partnerships are critical for navigating complex market dynamics and delivering solutions tailored to region-specific waste management challenges.

“We see tremendous potential in the Central European market,” said Mr. Jignesh Kundaria, Director and CEO of FORNNAX.
“Partnering with someone as experienced and well-established as Mr. Jerschl gives us a strong foothold and allows us to better serve our customers. This marks a major milestone in our efforts to promote reliable, efficient and future-ready recycling solutions globally,” he added.

This collaboration further strengthens FORNNAX’s commitment to environmental stewardship, innovation, and sustainable waste management, supporting the transition toward a greener and more circular future.

 

Continue Reading

Concrete

Budget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook

Published

on

By

Shares

Higher capex, city-led growth and CCUS funding improve demand visibility and decarbonisation prospects for cement

Mumbai

Cement manufacturers have welcomed the Union Budget 2026–27’s strong infrastructure thrust, with public capital expenditure increased to Rs 12.2 trillion, saying it reinforces infrastructure as the central engine of economic growth and strengthens medium-term prospects for the cement sector. In a statement, the Cement Manufacturers’ Association (CMA) has welcomed the Union budget 2026-27 for reinforcing the ambitions for the nation’s growth balancing the aspirations of the people through inclusivity inspired by the vision of Narendra Modi, Prime Minister of India, for a Viksit Bharat by 2047 and Atmanirbharta.

The budget underscores India’s steady economic trajectory over the past 12 years, marked by fiscal discipline, sustained growth and moderate inflation, and offers strong demand visibility for infrastructure linked sectors such as cement.

The Budget’s strong infrastructure push, with public capital expenditure rising from Rs 11.2 trillion in fiscal year 2025–26 to Rs 12.2 trillion in fiscal year 2026–27, recognises infrastructure as the primary anchor for economic growth creating positive prospects for the Indian cement industry and improving long term visibility for the cement sector. The emphasis on Tier 2 and Tier 3 cities with populations above 5 lakh and the creation of City Economic Regions (CERs) with an allocation of Rs 50 billion per CER over five years, should accelerate construction activity across housing, transport and urban services, supporting broad based cement consumption.

Logistics and connectivity measures announced in the budget are particularly significant for the cement industry. The announcement of new dedicated freight corridors, the operationalisation of 20 additional National Waterways over the next five years, the launch of the Coastal Cargo Promotion Scheme to raise the modal share of waterways and coastal shipping from 6 per cent to 12 per cent by 2047, and the development of ship repair ecosystems should enhance multimodal freight efficiency, reduce logistics costs and improve the sector’s carbon footprint. The announcement of seven high speed rail corridors as growth corridors can be expected to further stimulate regional development and construction demand.

Commenting on the budget, Parth Jindal, President, Cement Manufacturers’ Association (CMA), said, “As India advances towards a Viksit Bharat, the three kartavya articulated in the Union Budget provide a clear context for the Nation’s growth and aspirations, combining economic momentum with capacity building and inclusive progress. The Cement Manufacturers’ Association (CMA) appreciates the Union Budget 2026-27 for the continued emphasis on manufacturing competitiveness, urban development and infrastructure modernisation, supported by over 350 reforms spanning GST simplification, labour codes, quality control rationalisation and coordinated deregulation with States. These reforms, alongside the Budget’s focus on Youth Power and domestic manufacturing capacity under Atmanirbharta, stand to strengthen the investment environment for capital intensive sectors such as Cement. The Union Budget 2026-27 reflects the Government’s focus on infrastructure led development emerging as a structural pillar of India’s growth strategy.”

He added, “The Rs 200 billion CCUS outlay for various sectors, including Cement, fundamentally alters the decarbonisation landscape for India’s emissions intensive industries. CCUS is a significant enabler for large scale decarbonisation of industries such as Cement and this intervention directly addresses the technology and cost requirements of the Cement sector in context. The Cement Industry, fully aligned with the Government of India’s Net Zero commitment by 2070, views this support as critical to enabling the adoption and scale up of CCUS technologies while continuing to meet the Country’s long term infrastructure needs.”

Dr Raghavpat Singhania, Vice President, CMA, said, “The government’s sustained infrastructure push supports employment, regional development and stronger local supply chains. Cement manufacturing clusters act as economic anchors across regions, generating livelihoods in construction, logistics and allied sectors. The budget’s focus on inclusive growth, execution and system level enablers creates a supportive environment for responsible and efficient expansion offering opportunities for economic growth and lending momentum to the cement sector. The increase in public capex to Rs 12.2 trillion, the focus on Tier 2 and Tier 3 cities, and the creation of City Economic Regions stand to strengthen the growth of the cement sector. We welcome the budget’s emphasis on tourism, cultural and social infrastructure, which should broaden construction activity across regions. Investments in tourism facilities, heritage and Buddhist circuits, regional connectivity in Purvodaya and North Eastern States, and the strengthening of emergency and trauma care infrastructure in district hospitals reinforce the cement sector’s role in enabling inclusive growth.”

CMA also noted the Government’s continued commitment to fiscal discipline, with the fiscal deficit estimated at 4.3 per cent of GDP in FY27, reinforcing macroeconomic stability and investor confidence.

Continue Reading

Concrete

Steel: Shielded or Strengthened?

CW explores the impact of pro-steel policies on construction and infrastructure and identifies gaps that need to be addressed.

Published

on

By

Shares

Going forward, domestic steel mills are targeting capacity expansion
of nearly 40 per cent through till FY31, adding 80-85 mt, translating
into an investment pipeline of $ 45-50 billion. So, Jhunjhunwala points
out that continuing the safeguard duty will be vital to prevent a surge
in imports and protect domestic prices from external shocks. While in
FY26, the industry operating profit per tonne is expected to hold at
around $ 108, similar to last year, the industry’s earnings must
meaningfully improve from hereon to sustain large-scale investments.
Else, domestic mills could experience a significant spike in industry
leverage levels over the medium term, increasing their vulnerability to
external macroeconomic shocks.(~$ 60/tonne) over the past one month,
compressing the import parity discount to ~$ 23-25/tonne from previous
highs of ~$ 70-90/tonne, adds Jhunjhunwala. With this, he says, “the
industry can expect high resistance to further steel price increases.”

Domestic HRC prices have increased by ~Rs 5,000/tonne
“Aggressive
capacity additions (~15 mt commissioned in FY25, with 5 mt more by
FY26) have created a supply overhang, temporarily outpacing demand
growth of ~11-12 mt,” he says…

To read the full article Click Here

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds