Connect with us

Environment

We have a target to go beyond 20% TSR by 2025

Published

on

Shares

Berthold Kren, Business Head, Geocycle India & Head of Geocycle Asia, discusses AFR initiatives of the industry, its advantages and where India stands by this yardstick.

What are the main AFR materials you are using in your plants in India?
If we split the waste into segments, the largest segment is that of agricultural waste. So, the number one biomass is paddy husk and biomass that is available in agricultural residue. Then comes industrial waste, which is split into non-hazardous and hazardous category. The former mainly comes from big industries like steel, aluminium and FMCG companies like Coca Cola, PepsiCo, ITC, Nestle, Hindustan Unilever etc. The hazardous waste comes mainly from automotive, pharmaceutical and chemical industries. And the third segment is Segregated Combustible Fraction (SCF)/ Refuse Derived Fuel (RDF) which originates from municipal waste, household waste or garbage that is collected in cities and then treated by ULBs or contractors to enable it to become usable fraction for cement kiln. This is the fastest growing origin of waste. In addition, we also utilise hundreds of thousands of tons of mineral waste, originating from heavy industries like steel, alumina, foundries and thermal power plants. Any waste that is arriving at our sites, still needs certain levels of pre-processing (bringing it into the right form and quality) before it can be co-processed (thermally used) in our cement kilns. We receive waste usually direct from the origins (industries, municipalities and collectors) and meticulously test every truck, to ensure compliance even beyond legal requirements. Preprocessing waste and utilising them in the cement process is a costly process if done properly and in a compliant way. It requires experience, knowledge and a lot of investment.

You are also said be a plastic negative company…
Yes, both Ambuja Cement and ACC co-process a multiple of their own plastic footprint, although cement bags are usually reused/recycled several times prior to end of life for different purposes. Geocycle even helps other companies to become plastic negative. Geocycle only co-processes the non-recyclable plastic. A lot of plastic waste comes from industries directly as a production residue. From municipal waste, there is quite some plastic waste in SCF, if the municipality decides to segregate the collected streams. And of course, we take all sorts of non-recyclable plastic waste directly from dry waste management centres and plastic collectors. Recyclable plastic is economically and ecologically better used in the recycling industry.

Are you part of Swachh Bharat Mission too?
Co-processing is an important part of Swachh Bharat as well. We have a solution for segregated waste, 30 or 40 per cent of the volume that would go to an ordinary municipal landfill. For example, Mumbai produces 10,000-12,000 tonnes of fresh municipal waste every day. If a city of that size decides to segregate the waste, to enable composting and biomethanation, then the remaining at least 1,200 tonnes of segregated combustible fraction can be processed further and used in cement kilns or waste-to-energy plants.

In our biggest operation at ACC’s Wadi plant, we have the capability and expertise to pre-process 600 tonnes of such a fraction in a day by September-October 2019. With 600 tonnes, it will be around 20 per cent Thermal Substitution Rate (TSR, replacement of natural resources). But this requires a lot of investment in logistics and installations upfront. The Swachh Bharat Mission is only one step; we will have to do a lot more.

What is the level of energy efficiency you have achieved?
The Indian cement industry is one of the most energy efficient countries in the sector. The efforts in energy efficiency and CO2 reduction are far ahead of the targets for most of the players. So is Ambuja Cement and ACC. Besides that we are also by far the biggest co-processor of Alternative Fuels and Raw Materials (AFR) in the country and Geocycle is definitively the market leader. If we take the average of both the companies, I think this year we will achieve something around six per cent TSR realistically. We have kiln lines which can achieve over 20 per cent of TSR.

Unfortunately, the availability of waste is not evenly spread out through the country. That is currently the biggest problem. Waste has sometimes to be transported for too long to reach a cement plant. Our superstars are Ambuja Cement’s Maratha Cement Works (MCW) plant which has already achieved 22 per cent and ACC Wadi plant is achieving close to 20 per cent, mainly based on plastic and RDF from municipal waste. The waste is coming from municipalities and sites, who have decided to collaborate with us and build up a robust system. They collect and treat, and we offer the service of pre- and co-processing – a symbiosis that is working very well.

To what extent Indian cement companies are comparable to global benchmarks in exploiting AFR? Utilising AFR may be?
The average Indian cement industry usage, according to Cement Manufacturers Association (CMA), is somewhere at three to four per cent. Compared with most of the South East Asian countries where LafargeHolcim is present or was present, India is at the backbench. Countries like Philippines, Malaysia and Indonesia have sometimes double or triple of the TSR that we have. Even compared with Latin America, which is a comparable market, there is a huge gap to close. In Brazil, Argentina, Ecuador and Honduras; we see TSR in double digits. Compared with countries in Africa, there are some countries where TSR is 20 plus per cent, Egypt, for example, is also in double digit already. In Europe, we have countries/organisations which are already beyond 80 to 90 per cent. So we have a lot of catch up.

Why is India at the backbench?
There are several reasons. Firstly, availability of proper waste. The composition of waste is different in India and the segregation levels are poor. The Indian cement industry, and particularly both Ambuja Cement and ACC, have a huge potential to utilise waste. But quantity and quality of the waste that is collected and prepared is inferior compared to other countries.

Secondly, the distances that waste has to travel are too long and costly. The third is, If you want to achieve 20-30-40 per cent of TSR, you need not only a lot of knowledge and technical understanding, but also require a lot of investment. Last but not the least, a functioning and efficient collection and segregation of waste has to be developed. We see that in LATAM and especially in Europe.

What are the advantages of co-processing in cement plants vs. other processes?
A lot of industries have zero landfill policy and they are willing to take this responsibility and pay for the sustainable disposal of waste. And this has two positive effects – The waste finds its way to the most economical and ecological solution. Be it recycling, or any other solution. Waste, that cannot be recycled as a product, is repurposed and used in co-processing in cement kilns. In addition, co-processing does not create an additional emission point and there is no residue to be landfilled later. If you go for pure waste incineration, you always have to deal with off gas emissions and you have ash at the end. Most of these ashes have to be landfilled. The cement process has a built-in off gas cleaning process, which is well monitored, and doesn’t leave behind any ashes.

Then what is the hindrance?
The problem of waste in India is huge and people are looking for a quick fix, which doesn’t exist. States like Germany and Austria, leading in waste treatment, needed about 40 years to achieve current standards. The Polluter Pays Principle and a strict adherence to the waste hierarchy paired with raising awareness in the society, have led to this development. Legally India has reached the same state, but now these principles need to be implemented as well. Currently people expect to be paid for any waste, arguing that it has value. But non recyclable waste cannot be used directly in the kiln, it needs to be transported and pre-processed until it can be used in installations that need special maintenance and costs a lot of money. At the moment, there is a notion that proposes that the cement industry pays for the disposal/co-processing of RDF. This violates the "Polluter Pays Principle". Why? If the "polluter has to pay" for generating waste, number one, it creates demand of waste treatment capacity. It will enable the creation of new recycling technologies and a positive development in waste treatment. Number two, it increases the pressure on the industry and society to reduce waste. So, in principle it is a win-win situation for everybody. If it costs money to dispose the waste, you will start producing more cleverly, segregate better and recycle more – A method that is applied successfully all over the world. You will buy products which have less waste. The industries will produce their products by creating less waste or in a recyclable way. Same applies to municipalities but indeed the funding in the municipal sector is a delicate topic. I do believe that even this can be done in a proper way, as soon as municipalities start to understand the value of having less dumpsites, less soil, water and air pollution. We need to take into account the cost for the sanitation of these dumpsites/landfills that will pollute the environment for generations. Cities will have to spend more for proper segregation and waste treatment in the near future to solve these issues on the long term for keeping them cleaner.

So, what is the way forward…
Waste management, like any other business, needs to be self-sustainable to a certain degree. A prospering waste industry will also have proper competition. We will be bound to this competition too. If there is a better solution than co-processing, it will prevail. That way, everybody benefits. The most economical and the most ecological solution will prevail. Whatever recycling or treatment solution you pick, it costs money. And if it is paid for, then these solutions will flourish. Eventually at one point a landfill tax might be discussed to reduce landfilling further and steer the streams more towards recycling and waste avoidance.

If that hindrance is removed, then what..?

A flourishing waste industry will develop and many solutions will coexist, amongst which you can choose the best suitable. Also the capacities of waste utilization in the cement industry will build faster; the knowledge and competence will grow. Ambuja Cement and ACC have been building capacities and experience for seven years. The development can still accelerate.

What is the target of energy efficiency in your plants, please discuss the timeline as well?
We definitely have a target to go beyond 20 per cent TSR, by 2025. From 6 per cent at present, we have still quite a lot of ground to cover. So, this is a very ambitious target and it depends not only on ACC and Ambuja Cement, it also depends on the availability of waste. Starting from September-October our biggest plant in Wadi will go on full steam. But I also hope for Ambuja Cement’s Bhatapara and MCW plants where each one kiln can already achieve 300 to 400 tonnes of consumption a day.

Can you give a brief description about Geocycle, its objectives?
LafargeHolcim is globally the biggest cement and construction material company, and before the merger, both Lafarge and Holcim had a very strong focus on utilisation of AFR in their operations. Geocycle existed already within the Holcim organisation, and after the merger between Lafarge and Holcim in 2015, the Group had decided to maintain this brand and roll it out globally. Now, Geocycle is present in over 50 countries and basically in all the countries where LafargeHolcim has its cement operation. In this respect, I represent the regional organisation for Asia, which contains South East Asia, India, Bangladesh and Philippines, and until recently it also included Indonesia and Malaysia. Geocycle is an organisation with 160 people on seven production sites in India. And in total we are utilising AFR in 19 of our 21 kilns of ACC and Ambuja.

Being the leader in cement industry sustainability how many companies are utilising your services in India and globally? In India we have more than 600 customers now, and globally, we are talking about thousands of customers that we are servicing, co-processing more than 11 million tonnes of waste every year worldwide. With this, we are amongst the biggest waste management companies in the world. In India, we have a target to co-process one million tonnes this year, against 880 thousand tonnes achieved in 2018.

Any non-cement sustainability initiative you have undertaken…
In north India, particularly in Punjab and Haryana, they burn crop residue and the smoke engulfs the capital city of Delhi creating a lot of pollution, and Geocycle is collecting that waste biomass for co-processing. Together with Ambuja Cement Foundation (ACF), we have created farmers associations. Through these associations we collect the biomass and co-process it. Indeed in this case we pay the farmers for their biomass, because it requires workforce to produce it to our specifications. My grandfather was a farmer too and I am actually happy that this works out so well. Through ACF we are working a lot there to support farmers in other respects as well.

Is Delhi government supporting your project?
As Geocycle, we are not getting any subsidy or incentive; neither are we asking for it. We can make the business self-sustainable. If we can’t manage it this way it would be only is short lived. But indeed we see a lot of support from the ministries and government. We are always open to collaborate.

– BS SRINIVASALU REDDY

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Balancing Demand and Sustainability

Published

on

By

Shares

ICR discusses India’s rapid advances in renewable energy, on track to exceed its 2030 targets, even as the rising energy demands challenge complete reliance on sustainable sources.

The cement industry, a cornerstone of infrastructure development, has long been associated with high emissions, particularly of CO2. This sector alone is responsible for approximately 8 per cent of global carbon dioxide emissions, primarily due to the energy-intensive processes of clinker production and calcination. Beyond carbon emissions, cement production also generates particulates, nitrogen oxides (NOx), sulphur oxides (SOx), and other pollutants, contributing to environmental degradation and health risks. With the global push towards sustainable practices and carbon neutrality, addressing emissions in the cement industry has become imperative.
According to Climate Change Performance Index, India ranks 7 in 2024. India receives a high ranking in the GHG Emissions and Energy Use categories, but a medium in Climate Policy and Renewable Energy, as in the previous year. While India is the world’s most populous country, it has relatively low per capita emissions. Data shows that in the per capita GHG category, the country is on track to meet a benchmark of well below 2°C.
India’s situation underscores the complexity of transitioning to sustainable energy systems in the face of rising and fluctuating energy needs. International support is crucial for India to access advanced technologies, financial resources, and best practices that can accelerate its transition to a sustainable energy future. Our analysis shows that with current policies, India will overachieve its conditional NDC targets of achieving 50 per cent non-fossil capacity by 2030, so it could set stronger targets. India has ambitious renewable energy plans as outlined in the National Electricity Plan 2023 (NEP2023) aiming for a share of installed capacity of 57 per cent and 66 per cent in 2026-27 and 2031-32, respectively. Share of renewable energy capacity in India reached 44 per cent, ranked fourth in the world in renewable energy capacity installations in 2023, after China, the US and Germany. The NEP2023 is reflected in the lower bound of our current policy and action pathway.
India has seen a steady increase in renewable energy deployment, including both utility-scale and rooftop solar, leading to the share of coal capacity dropping below 50 per cent for the first time. However, this increase in renewable energy capacity is barely able to keep up with the surging demand. As a result, the electricity generation share of renewable energy, including large hydro, remains at around 18 per cent, showing no improvement since last year. Investment in renewable energy projects in India are projected to increase by over 83 per cent to around USD 16.5 bn in 2024, with fossil fuel companies also diversifying their investments into the renewable sector. Despite this, India has not committed to phasing out coal power or fossil gas.
The National Electricity Plan indicated a temporary halt in coal capacity addition, but current under-construction capacity exceeds the threshold stated in these plans. While new gas power projects have been abandoned, the utilisation of existing gas power plants has increased to meet energy demand driven by severe heat stress.

Understanding Emissions in Cement Production
Primary Sources of Emissions: Cement production emissions stem mainly from three sources: calcination, fuel combustion, and electricity use. During calcination, limestone is heated to produce clinker, releasing CO2 as a by-product. This process alone accounts for roughly 60 per cent of emissions in cement manufacturing. The remaining emissions result from burning fossil fuels in kilns to achieve the high temperatures needed for calcination and from electricity consumption across production stages.
Raju Ramchandran, SVP Manufacturing (Cluster Head – Central), Nuvoco Vistas, says, “We consistently track air emissions from fuel combustion in our cement manufacturing and power generation operations. The burning of fossil fuels releases pollutants such as Oxides of Sulphur (SOx), Oxides of Nitrogen (NOx), and Particulate Matter (PM), which require stringent monitoring.”
“We ensure compliance with regulatory standards by using the Continuous Emission Monitoring System (CEMS) to monitor these emissions. For the FY 23-24, both our stack and fugitive emissions have stayed within the permissible limits set by Pollution Control Boards. Moreover, our ongoing monitoring of fugitive emissions ensures that we meet the prerequisite air quality standards,” he adds.
In addition to CO2, the cement industry releases various pollutants that pose risks to air quality and public health. These include particulate matter, NOx, and SOx, which can lead to respiratory and cardiovascular issues, acid rain, and ecosystem imbalances.
Governments worldwide are setting increasingly stringent regulations to curb industrial emissions. Standards such as the EU Emissions Trading System and India’s National Action Plan on Climate Change encourage cement manufacturers to adopt cleaner technologies. Many countries now impose limits on NOx, SOx and particulate emissions, with the aim of minimising the industry’s environmental impact.

Challenges in Reducing Emissions
High carbon intensity of cement production: Cement’s high carbon intensity largely stems from the chemical reactions involved in transforming limestone into clinker, making emissions difficult to reduce without altering core processes. Additionally, achieving the necessary kiln temperatures requires significant energy, often derived from coal or natural gas.
Operational limitations: Altering the traditional cement production process can compromise the quality and durability of the end product. Adapting existing production lines for lower emissions involves extensive R&D and technical trials to ensure the finished cement meets industry standards.
Financial constraints: The cost of implementing green technology is high, creating economic challenges, particularly for smaller cement manufacturers. Equipment upgrades, energy-efficient kilns, and carbon capture facilities require considerable investment, which many companies find difficult to justify without strong financial incentives.
Balancing market demands and environmental goals: With global infrastructure demands rising, the cement industry faces pressure to meet growing production needs while simultaneously working to reduce emissions. Balancing these competing demands requires innovation, efficient resource management, and support from stakeholders.

Technological Innovations for Emission Reduction
Alternative fuels and energy sources: One of the most effective ways to reduce emissions is by replacing fossil fuels with alternatives like waste-derived fuels, biomass, or biofuels. Some manufacturers are incorporating solar and wind energy to power auxiliary processes, further reducing reliance on traditional energy sources.
Sudhir Pathak, Head- Central Design & Engg (CDE), QA, Green Hydrogen, Hero Future Energies, says, “The cement industry is one of the largest consumers of grid power (Scope 2) and also a guzzler of in-process fossil CO2 (Scopem1) including process-based CO2 through limekilns. Decarbonisation can be achieved only up to 50 per cent to 60 per cent through plain hybrid solar and wind. However, for achieving balance 40 per cent, storage is essential, be it chemical or mechanical. Today, HFE is ready to provide such bespoke storage solutions as is evident through several complex RTC tenders that we have won in the last 6-8 months floated by agencies like SECI, NTPC and SJVN. These include tenders for FDRE projects, peak power, load following, etc. Further, regarding green hydrogen and its derivatives, we are ready to apply these for decarbonising industrial heating and mobility.”
Carbon Capture and Storage (CCS): CCS technology captures emissions at the source, storing CO2 to prevent it from entering the atmosphere. Recent advancements in CCS technology make it a viable option for large-scale cement plants, although high costs and infrastructure requirements remain obstacles to widespread adoption.
Clinker Substitution: Reducing clinker content is a promising method for emission reduction, achieved by using supplementary cementitious materials (SCMs) such as fly ash, slag, and calcined clay. These materials not only reduce CO2 emissions but also enhance the durability and performance of cement. SCMs are gradually becoming industry-standard components, especially in eco-friendly and green cement products.
Rajesh Kumar Nayma, Assistant General Manager – Environment, Wonder Cement, says, “The use of AFR plays a critical role in our strategy to reduce the environmental footprint of cement production. By substituting traditional fossil fuels with waste-derived alternatives like biomass, refuse-derived fuel (RDF) and industrial by-products, we significantly lower CO2 emissions and reduce the demand for natural resources. The utilisation of supplementary cementitious materials (SCMs), such as fly ash, helps in reducing clinker consumption, which is a major source of carbon emissions in cement production. This not only decreases our reliance on energy-intensive processes but also promotes waste recycling and resource efficiency. AFR adoption is an integral part of our commitment to the circular economy, ensuring that we minimise waste and optimise the use of materials throughout the production cycle, ultimately contributing to a more sustainable and eco-friendly cement industry.”
“WCL is exploring transitioning from fossil fuels to cleaner alternatives like biofuels or hydrogen or RDF/plastic waste/other hazardous waste. Till date, 5 per cent TSR has been achieved, while the intent is to achieve more than 20 per cent TSR. WCL is utilising the hazardous and other waste as an alternative fuel or raw material. We have used more than 3 lakh metric tonne of hydrogen waste and other waste in FY-2023-24,” he adds.
Improving energy efficiency is critical for emissions reduction. Technologies like high-efficiency kilns, heat recovery systems, and process optimisation techniques are helping manufacturers achieve more output with less energy. These measures reduce the carbon footprint while lowering operational costs.

The Role of SCMs
SCMs serve as partial replacements for clinker, providing a dual benefit of reduced carbon emissions and improved product resilience. The use of materials like fly ash and slag also helps mitigate industrial waste, contributing to a circular economy. Fly ash, slag, and silica fume are among the most widely used SCMs. Each has unique properties that contribute to cement’s strength, workability, and durability. By incorporating SCMs, manufacturers can produce cement with a lower environmental footprint without compromising quality.
While SCMs are effective, several obstacles hinder their widespread adoption. Supply chain constraints, material variability, and lack of technical standards are challenges that manufacturers face. Additionally, geographic limitations impact access to certain SCMs, creating disparities in their usage across regions.

Policy and Industry Collaboration
Policies play a critical role in driving green transitions within the cement industry. Carbon credits, tax incentives, and funding for R&D are some measures governments have introduced to support emission reduction. India’s Perform, Achieve, and Trade (PAT) scheme is an example of a policy incentivising industrial energy efficiency.
Collaborations between government entities, private corporations, and research institutions foster innovation and accelerate the adoption of sustainable practices. Partnerships can also help address funding gaps, allowing companies to explore new technologies without bearing the full financial burden.
International frameworks such as the Paris Agreement and industry-led efforts like the Global Cement and Concrete Association (GCCA) are setting targets for sustainable cement production. These initiatives encourage the sector to adopt environmentally friendly practices and set a roadmap toward achieving net-zero emissions.

Towards a Net-Zero Future
Reaching net-zero emissions is an ambitious but necessary goal for the cement industry. Realistic targets, set with interim milestones, allow companies to gradually transition to greener processes while maintaining production efficiency. Continued investment in R&D is crucial for discovering new methods of emission reduction. Emerging technologies such as carbon-negative materials, alternative binders, and low-carbon clinkers hold promise for the future, potentially transforming cement production into a more sustainable process.
Increasingly, consumers and investors are prioritising sustainability, placing pressure on companies to reduce their environmental impact. This shift in consumer sentiment is driving the cement industry to adopt green practices and focus on transparency in emissions reporting.

Conclusion
The journey toward reducing environmental impact in the cement industry is complex and multifaceted, requiring a combination of innovation, policy support, and industry collaboration. By adopting alternative fuels, implementing carbon capture technology, integrating SCMs, and improving energy efficiency, the industry can take significant strides in minimising its carbon footprint. Achieving sustainability in cement production is essential not only for the industry’s future but also for the planet’s well-being. Together, industry players, policymakers, and consumers can support the transition to a net-zero future, ensuring that cement remains a vital yet sustainable component of global infrastructure.

– Kanika Mathur

Continue Reading

Concrete

Red River Formation in Kiln Operations

Published

on

By

Shares

Dr SB Hegde, Professor, Jain College of Engineering and Technology, Hubli, and Visiting Professor, Pennsylvania State University, USA, helps us understand the red river formation in cement kiln operations, its causes, impacts and mitigation strategies.

Red river formation in cement kilns, where molten clinker flows uncontrollably in the cooler, is a costly problem for cement plants. The phenomenon not only affects clinker quality but also leads to significant operational disruptions, increased energy consumption and accelerated wear on kiln refractory bricks. Understanding the factors that cause red river formation and implementing strategies to prevent it are critical to maintaining operational efficiency and clinker quality.
This paper explores the causes of red river formation, the operational impacts it has on kiln performance, and the various mitigation strategies that cement plants can adopt. Additionally, safety considerations associated with the prevention and handling of red river formation are discussed, with practical insights from case studies of successful plant interventions in India and globally.

Causes of red river formation
Red river formation is primarily caused by improper kiln operations, including fluctuating kiln temperatures, oxygen levels, and cooler inefficiency. The following parameters are essential contributors:
Kiln temperature: Inconsistent temperature control in the kiln’s burning zone, often exceeding 1500°C, creates an imbalance between the solid and molten clinker phases, leading to red river formation. Maintaining temperatures within a more stable range of 1470-1490°C ensures that the clinker remains solid as it moves into the cooler.
Oxygen levels and CO concentrations: Oxygen levels above 2.5 per cent increase the risk of over-combustion, while elevated CO levels above 0.3 per cent indicate incomplete combustion, both contributing to excessive clinker melting. Optimising oxygen levels to 1.8-2.0 per cent minimises the risk.
Raw mix composition: The raw mix plays a vital role in clinker formation. A high liquid phase due to improper ratios of silica, alumina, and iron oxide can lead to excessive melting. Controlling the silica modulus (SM: 2.3-2.7) and alumina modulus (AM: 1.3-1.8) ensures a more stable clinker and reduces the risk of red river formation. If the raw mix is improperly proportioned, red river formation becomes more likely due to high fluxing compounds that melt at lower temperatures.
Kiln speed and torque: Kiln speeds that fluctuate below 3.4 rpm can cause material buildup, while kiln torque exceeding 50-60 per cent indicates stress that can lead to clinker instability.
Cooler efficiency: Inefficiencies in the clinker cooler, with efficiency levels below 78 per cent, can exacerbate red river formation. Clinker that is not cooled properly will remain molten for longer, allowing it to flow uncontrollably. Coolers should maintain exit temperatures between 180-200°C to prevent red river incidents.
Impact on clinker quality and kiln performance
The occurrence of red river has numerous negative impacts on both clinker quality and kiln performance:
Clinker quality: Red river formation results in poor clinker grindability, higher variability in free lime content and inconsistent cement properties. Poor clinker reactivity reduces both early and late strength development in the final cement product.
Increased heat consumption: Red river typically increases specific heat consumption by 3-5 per cent, resulting in higher fuel usage. These inefficiencies can significantly affect the plant’s cost structure, driving up operational expenses.
Refractory damage: The molten clinker accelerates the wear of refractory bricks in the kiln, especially in the burning zone and cooler transition areas. Brick life can decrease by 25-30 per cent, leading to more frequent replacements and higher maintenance costs.
Equipment and instrumentation damage: The uncontrolled molten flow of clinker during red river incidents can damage cooler plates, kiln discharge systems, and even temperature sensors and thermocouples, leading to costly repairs and prolonged downtime.

Mitigation strategies
Mitigating red river formation requires a multi-faceted approach combining operational optimisation, automation and staff training:
Kiln temperature control: Maintaining stable burning zone temperatures in the 1470-1490°C range is key to preventing excessive melting of clinker. Advanced temperature monitoring systems can help regulate temperature fluctuations.
Cooler efficiency optimisation: To ensure proper cooling, cooler efficiency must be maintained at 78-80 per cent, with clinker exit temperatures not exceeding 200°C. Real-time airflow adjustments in grate coolers improve cooling performance, solidifying the clinker at the appropriate stage.
Automation and data analytics: Advanced Process Control (APC) systems using data analytics can monitor critical kiln parameters—such as temperature, oxygen levels, and torque—in real-time, allowing for predictive maintenance and early intervention when red river signs appear. This technology has been implemented successfully in leading plants globally to prevent red river formation.

Indian case studies
Case Study 1: Cement Plant in South India – Optimisation of Kiln Parameters
A cement plant in South India faced recurrent red river issues due to high kiln temperatures and low cooler efficiency. After comprehensive process audits, the plant optimised its kiln temperature to 1480°C, reduced oxygen levels to 1.9 per cent, and upgraded its cooler to an efficiency of 80 per cent. These changes reduced red river incidents by 85 per cent, saving the plant Rs 10 million in energy costs annually and improving clinker quality by
15 per cent.

Case Study 2: Cement Plant in North India – Cooler Upgrade and Automation
A northern India plant increased cooler efficiency from 70 per cent to 78 per cent by installing an advanced grate cooler. This reduced clinker exit temperatures to 190°C, preventing red river formation. Automation systems provided real-time adjustments, decreasing the frequency of incidents by 75 per cent and saving `12 million annually.

Global Case Studies
Case Study 1: European Plant – Automation Success
A German cement plant, experiencing red river issues due to fluctuating oxygen levels, installed an advanced data-driven automation system. The system stabilised oxygen at 1.9 per cent and maintained kiln temperature at 1,475-1,485°C, reducing red river by 90 per cent. Clinker quality improved by 10 per cent, with a reduction in specific heat consumption by 4 per cent.

Case study 2: US Plant – Operator Training and Process Optimisation
A US cement plant reduced red river occurrences by 70 per cent through kiln speed optimisation (3.8 rpm) and comprehensive operator training. Improved monitoring of kiln torque and cooler exit temperatures led to higher cooler efficiency (75 per cent) and an annual savings of $2 million.

Safety Aspects
Safety is a paramount concern in red river incidents. When molten clinker flows uncontrollably, it poses a significant risk to personnel working near the kiln and cooler areas.

To mitigate these risks:

  • Clearance zones: Kiln and cooler areas should have strict clearance zones for personnel when red river incidents are detected.
  • Protective gear and training: Personnel should be equipped with proper protective equipment (PPEs) and trained to handle emergencies involving molten clinker. Emergency shutdown procedures should be well-documented and rehearsed.
  • Automation and early warning systems: Automation can provide early warning systems that alert operators to potential red river formation before it becomes critical, ensuring safe intervention.

Conclusion
Red river formation remains a major operational challenge for cement plants, but it can be effectively mitigated through proper kiln temperature control, cooler efficiency optimisation and the use of advanced automation systems.
The case studies highlight the importance of process improvements and staff training in reducing red river occurrences, improving clinker quality, and lowering operational costs. Additionally, safety
measures must be prioritised to protect personnel from the risks posed by molten clinker. By incorporating these strategies, cement plants can ensure consistent kiln performance and enhanced operational efficiency.

References
1. Duda, W. H. (1985). Cement Data Book. International Process Engineering in the Cement Industry. Bauverlag GmbH.
2. Javed, I., & Sobolev, K. (2020). “Use of Automation in Modern Cement Plants.” Cement and Concrete Research, 130, 105967.
3. Tamilselvan, P., & Kumar, R. (2023). “Optimisation of Kiln and Cooler Systems in Indian Cement Plants.” Indian Cement Review, 34(7), 42-48.
4. Martin, L. (2019). “Case Studies of Red River Mitigation in European Cement Plants.” International Journal of Cement Production, 12(2), 63-78.
5. Schorr, H. (2021). “Advanced Process Control in Cement Manufacturing.” Cement International, 19(3), 30-37.
6. Singh, V. K., & Gupta, A. (2022). “Impact of Raw Mix on Clinker Formation and Kiln Operations.” Global Cement Magazine, 14(4), 22-29.

About the author: Dr SB Hegde brings over thirty years of leadership experience in the cement industry in India and internationally. He has published over 198 research papers and holds six patents, with four more filed in the USA in 2023. His advisory roles extend to multinational cement companies globally and a governmental Think Tank, contributing to research and policy. Recognised for his contributions, he received the ‘Global Visionary Award’ in 2020 from the Gujarat Chambers of Commerce and Industry.

Continue Reading

Concrete

SCMs encourage closed-loop systems

Published

on

By

Shares

As the cement industry prioritises sustainability and performance, Supplementary Cementitious Materials (SCMs) are redefining standards, explains Tushar Khandhadia, General Manager – Production, Udaipur Cement Works.

What role do supplementary cementitious materials (SCMs) play in enhancing the performance and sustainability of cement and concrete?
SCMs play a crucial role in enhancing the performance and sustainability of cement and concrete. These materials are added to concrete to improve its properties such as strength, durability, and workability, as well as to reduce the environmental impact of cement production. The addition of SCMs to cement reduces the amount of Portland cement required to manufacture concrete, reducing the carbon footprint of the concrete. These materials are often industrial waste products or by-products that can be used as a replacement for cement, such as fly ash, slag and silica fume.
SCMs also reduce the amount of water required to produce concrete, which reduces the environmental impact of concrete production. This is achieved through their ability to improve the workability of concrete, allowing the same amount of work to be done with less water.
In addition, SCMs improve the durability of concrete by reducing the risk of cracking and improving resistance to chemical attack and other forms of degradation.

How has your company integrated SCMs into its production process, and what challenges have you encountered?
The integration of SCMs into cement and concrete production may pose certain challenges in the areas of sourcing, handling and production optimisation.

  • Sourcing: Finding an adequate and reliable supply of SCMs can be a challenge. Some SCMs, such as fly ash and slag, are readily available by-products of other industrial processes, while others such as silica fume or metakaolin may be more difficult to source.
  • Handling: The storage, handling, and transportation of SCMs require special considerations due to their physical and chemical properties. For instance, some SCMs are stored in moist conditions to prevent them from drying out and becoming airborne, which could pose a safety risk to workers.
  • Production optimisation: The addition of SCMs into the mix may require adjustments to the production process to achieve the desired properties of cement and concrete. For example, the use of SCMs may affect the setting time, workability, strength gain, and other properties of the final product, which may require reconfiguration of the production process.
  • Quality control: The addition of SCMs may introduce variability in the properties of cement and concrete, and rigorous quality control measures are necessary to ensure the final product meets the required specifications and standards.

Proper planning, handling and production optimisation are essential in overcoming the challenges encountered during the integration process.

Can you share insights on how SCMs such as fly ash, slag and silica fume impact the durability and strength of concrete in different environmental conditions?

  • Fly ash is a by-product of coal combustion and is widely used as an SCM in the production of concrete. When added to concrete, fly ash reacts with the calcium hydroxide present in the concrete to form additional cementitious materials, resulting in improved strength and durability. Fly ash increases the durability of concrete by improving its resistance to sulphate and acid attacks, reducing shrinkage and decreasing the permeability of concrete. Fly ash also enhances the workability and pumpability of concrete while reducing the heat of hydration, which reduces the risk of thermal cracking. In cold climates, fly ash helps to reduce the risk of freeze-thaw damage.
  • Slag is a by-product of steel production and is used as an SCM because of its high silica and alumina content. When added to concrete, slag reacts with the calcium hydroxide present in the concrete to form additional cementitious materials, resulting in improved strength and durability. Slag increases the durability of concrete by improving its resistance to sulphate and acid attacks, reducing shrinkage and improving the strength of concrete over time. Slag also enhances the workability of concrete, reduces the heat of hydration, and improves the resistance of concrete to chloride penetration.
  • Silica fume is a by-product of the production of silicon and ferrosilicon alloys and is used as an SCM because of its high silica content. When added to concrete, silica fumes react with the calcium hydroxide present in the concrete to form additional cementitious materials, resulting in improved strength and durability. Silica fume increases the durability of concrete by improving its resistance to sulphate and acid attacks, reducing permeability, and improving abrasion resistance. Silica fume also enhances the workability of concrete, reduces the heat of hydration, and improves the resistance of concrete to chloride penetration.

Overall, the use of SCMs such as fly ash, slag and silica fume can significantly improve the durability and strength of concrete in different environmental conditions. Their impact on concrete varies depending on the availability, physical and chemical properties of the specific SCM being used and proper testing and engineering analysis should be done for each mix design in order to optimise the final product.

With the global push for sustainability, how do SCMs contribute to reducing the carbon footprint of cement production?
SCMs provide an environmentally friendly alternative to traditional Portland cement by reducing the amount of clinker required to produce cement. Clinker is the main ingredient in Portland cement and is produced by heating limestone and other raw materials to high temperatures, which releases significant GHG emissions. Thus, by using SCMs, less clinker is required, thereby reducing GHG emissions, energy use and the environmental impact of cement production. Some SCMs such as fly ash and slag are by-products of other industrial processes, meaning that their use in cement production reduces waste and enhances resource efficiency. Moreover, the use of SCMs can enhance the properties of concrete, thereby increasing its durability and service life which helps to further reduce the overall embodied carbon of the structure.
In short, the use of SCMs contributes to reducing the carbon footprint of cement production by improving the efficiency of resource utilisation and reducing greenhouse gas (GHG) emissions during the production process. This has led to an increased demand for SCMs in the construction industry, as environmental concerns and sustainable development goals have become more prominent factors in the selection of building materials.

What strategies or innovations has your company adopted to ensure a consistent and reliable supply of SCMs, given their reliance on industrial by-products?

  • Developing partnerships with suppliers: Many cement and concrete manufacturers establish long-term partnerships with suppliers of SCMs. These partnerships provide a reliable supply of high-quality SCMs, improve supply chain efficiency, and often provide access to new sources of SCMs.
  • Advanced SCM processing techniques: Many companies are investing in advanced processing techniques to unlock new sources of high-quality SCMs. Advanced processing techniques include new separation processes, calcination techniques, and chemical activation methods.
  • Alternative SCM sources: Many companies are exploring alternative SCM sources to supplement or replace traditional SCMs. Examples include agricultural by-products such as rice hull ash or sugar cane bagasse ash, which can be used in place of fly ash.
  • Quality control measures: Strict quality control measures are necessary to ensure consistent quality of SCMs. Many companies use advanced testing methods, such as particle size analysis, chemical analysis, and performance testing, to validate the quality of SCM materials used in production.
  • Supply chain diversification: Diversifying suppliers and SCM sources is another way to ensure a reliable supply. This reduces the risk of supply chain disruptions caused by factors such as natural disasters, market changes, or geopolitical risks.

The strategies and innovations adopted to ensure a consistent and reliable supply of SCMs include establishing long-term partnerships with suppliers, investing in advanced processing techniques, exploring alternative SCM sources, implementing strict quality control measures, and diversifying supply chains. By implementing these approaches, we ensure that use of SCMs in cement production is an effective and viable solution for reducing the environmental impact of operations

How does the use of SCMs align with your company’s broader goals around circular economy and resource efficiency?
Here are some ways in which the use of SCMs supports these goals:

  • Reducing waste: The use of SCMs, such as fly ash and slag, diverts significant quantities of industrial waste from landfills, turning it into a valuable resource that can be used in construction. This helps to reduce waste and conserve natural resources.
  • Reducing carbon emissions: Cement production is a significant contributor to greenhouse gas emissions, and the use of SCMs can significantly reduce the amount of cement required in concrete mixtures. This helps to reduce the carbon footprint of construction activities and move towards a low-carbon economy.
  • Enhancing resource efficiency: The use of SCMs can reduce the demand for raw materials, energy, and water in the production of concrete. This not only conserves natural resources but also reduces the costs associated with the extraction, transportation and processing of these materials.
  • Closing the loop: SCMs encourage closed-loop systems in the construction sector, where waste materials from one process become input materials for another. This can improve the efficiency and sustainability of the construction industry.
  • Supporting sustainable design practices: The use of SCMs can support sustainable design practices by improving the durability and performance of structures while also reducing their environmental impact. This supports a circular approach to design, construction and operation of buildings and infrastructure
    that improves their social, economic and environmental sustainability.

What future trends or developments do you foresee in the use of SCMs within the cement industry?
Future trends in the use of SCMs within the cement industry are likely to focus on: increased utilisation of diverse waste-derived SCMs, development of new SCM sources to address potential shortages, advanced characterisation techniques to optimise SCM blends and data-driven approaches to predict and optimise SCM usage for reduced carbon footprint and improved concrete performance; all driven by the growing need for sustainable cement production and stricter environmental regulations.
Key aspects of this trend include:

  • Expanding SCM sources: Exploring a wider range of industrial byproducts and waste materials like recycled concrete aggregate, activated clays and certain types of industrial minerals as potential SCMs to reduce reliance on traditional sources like fly ash, which may become increasingly limited.
  • Advanced material characterisation: Utilising sophisticated techniques to better understand the chemical and physical properties of SCMs, allowing for more precise blending and optimisation of their use in cement mixtures.
  • Data-driven decision making: Implementing machine learning and big data analysis to predict the performance of different SCM combinations, allowing for real-time adjustments in cement production based on available SCM sources and desired concrete properties.
  • Focus on local sourcing: Prioritising the use of locally available SCMs to reduce transportation costs and environmental impact.
  • Development of new SCM processing techniques: Research into methods to enhance the reactivity and performance of less readily usable SCMs through processes like activation or modification.
  • Life cycle analysis (LCA) integration: Using LCA to assess the full environmental impact of different SCMs and optimise their use to minimise carbon emissions throughout the cement production process.
  • Regulatory frameworks and standards:Increased adoption of building codes and industry standards that promote the use of SCMs and set targets for reduced carbon emissions in cement production.

– Kanika Mathur

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds