Connect with us

Concrete

We employ a proactive maintenance strategy

Published

on

Shares

Raju Jain, General Manager, Wonder Cement discusses how they optimise material handling by integrating advanced technologies, automation, and sustainable practices to enhance efficiency, reduce operational costs, and minimise environmental impact.

Material handling plays a crucial role in cement production. How is your company optimising material handling systems to ensure efficiency and reduce operational costs?
At Wonder Cement, optimising material handling is key to improving overall plant efficiency and reducing operational costs. We focus on integrating advanced technologies and adopting a systematic approach to streamline our material handling processes. To minimise waste and energy consumption, we deploy automated conveyor systems that transport raw materials like limestone and gypsum with precision and reliability. These systems help in reducing the need for manual labour, which not only lowers labor costs but also minimises the potential for
human error.
Our optimisation strategies include real-time monitoring systems to track material flow and storage levels, ensuring that materials are used efficiently and without delay. We also employ energy-efficient motors and equipment that cut down on energy consumption, further driving operational savings. By utilising advanced data analytics, we can predict material needs and adjust our handling systems accordingly, leading to better resource management. In addition, our material handling systems are designed for minimal downtime, allowing us to maintain continuous operations and avoid costly interruptions. Regular maintenance protocols and use of high-quality equipment ensure long-term durability and performance, contributing to the overall cost-efficiency of our cement production processes.

What technologies or innovations has your organisation adopted to improve the safe and efficient transport of raw materials like limestone, gypsum, and clinker within the cement plant?
At Wonder Cement, scientific mining methods are utilised during limestone excavation. Our team of experts and experienced technical professionals oversee mining operations. To control dust generation, we employ wet drilling system that eliminates dust at its source. We adopt controlled blasting techniques to minimise noise, vibrations, and NOx emissions during blasting operations. Well-maintained mining equipment is used to reduce dust during loading and transportation. Additionally, water sprays are deployed on haul roads for effective dust control. We have embraced a variety of cutting-edge technologies to enhance the safe and efficient transport of raw materials within our plant. One of the primary innovations is the implementation of automated conveyor systems with high-efficiency motors and smart controls, which ensure smooth and consistent transportation of materials such as limestone, gypsum, and clinker. These conveyors are equipped with sensors that detect material flow rates and prevent overloading or spillage, which not only enhances safety but also minimises material waste.
We have also integrated dust suppression systems that mitigate dust generation during material transport. These systems help us maintain a cleaner and safer work environment while reducing the environmental impact of our operations. Additionally, the use of enclosed conveyors and fully automated bulk material handling systems prevents material exposure to the environment, reducing the risks associated with air contamination. Another key innovation is the incorporation of real-time monitoring and data analytics. Through the use of IoT (Internet of Things) sensors and AI-driven data platforms, we can monitor the health of our equipment and anticipate potential failures, enabling proactive maintenance. This reduces the risk of accidents, ensures continuous operation, and enhances overall efficiency in transporting raw materials throughout our cement plant.

How are you addressing the challenges of dust control and material spillage in your material handling processes, especially in bulk transport and storage?
At Wonder Cement , to reduce dust, spillage, and carbon emissions during heavy-duty vehicle transportation, we implemented a wagon and truck tippler system equipped with stackers and reclaimers, exceeding EPA standards and reducing carbon emissions. This setup facilitates efficient material transfer through enclosed conveyor systems. Controlling dust and preventing material spillage are critical priorities in our material handling processes, particularly during bulk transport and storage. To address dust control, we have deployed several advanced dust suppression technologies. Our primary approach involves using enclosed conveyor systems, which significantly reduce the amount of dust generated during the transport of raw materials like limestone, gypsum, and clinker. Additionally, we have installed misting and fogging systems that trap dust particles before they can become airborne, ensuring a cleaner and safer environment within the plant.
We have also incorporated dust collection systems, such as bag filters and electrostatic precipitators, at key material transfer points. These systems capture dust at the source, preventing it from escaping into the atmosphere. Regular monitoring and maintenance of these systems ensure their optimal performance, helping us meet stringent environmental regulations. Material spillage is minimised through the use of spill-resistant conveyor belts and properly designed transfer chutes. We ensure that our handling equipment is properly aligned and calibrated to avoid any unnecessary material loss. Furthermore, our real-time monitoring systems allow us to detect and address any material handling inefficiencies promptly, ensuring that spillage is kept to a minimum. By combining these efforts, we maintain a high level of operational efficiency while adhering to safety and environmental standards.

With sustainability becoming a key focus in the cement industry, what steps is your organisation taking to reduce the environmental impact of material handling, such as energy consumption and emissions?
Wonder Cement is deeply committed to reducing the environmental impact of its material handling operations. One of the primary steps we’ve taken is the integration of energy-efficient technologies across our material handling systems. We utilise high-efficiency motors, variable frequency drives (VFDs), and energy-optimised conveyor systems, which help us reduce energy consumption while maintaining operational efficiency. In terms of emissions, our focus is on minimising dust emissions through advanced dust suppression systems and using enclosed conveyors. We have also implemented real-time emissions monitoring systems to track and control particulate matter generated during material handling, ensuring compliance with environmental regulations. The installation of dust collectors, such as bag filters and electrostatic precipitators, helps capture and recycle dust back into the production process, reducing waste and emissions.
Furthermore, we are actively exploring alternative raw materials and fuels that have a lower carbon footprint. By integrating materials like fly ash and slag into our cement production process, we reduce the need for virgin raw materials, which in turn lowers the environmental impact of their extraction and transport. Our commitment to sustainability also includes efforts to optimise logistics and transportation. By streamlining material transport within the plant, we reduce fuel consumption and associated greenhouse gas emissions. These initiatives align with our broader sustainability goals, contributing to a greener, more responsible cement production process.

Automation and digitalisation are transforming material handling systems. How has your company integrated Industry 4.0 technologies like IoT, AI, and robotics to enhance material handling efficiency?
Wonder Cement has embraced Industry 4.0 technologies to significantly enhance the efficiency of our material handling systems. The integration of IoT (Internet of Things) devices throughout our plant allows us to gather real-time data on material flow, equipment performance, and operational conditions. This data is crucial for optimising our processes, as it enables us to monitor and adjust material handling systems dynamically based on demand and production needs. AI (Artificial Intelligence) plays a vital role in predictive maintenance and process optimisation. By analysing data from IoT sensors, AI algorithms can predict potential equipment failures and recommend preventive actions. This reduces unplanned downtime and prolongs the life of our machinery, ensuring smooth and continuous material transport. Additionally, robotics has been implemented in certain areas of our material handling processes, particularly in packaging and palletising operations. Robots handle these tasks with precision and speed, reducing the need for manual labor and minimising the risk of human error.
We also leverage digital twins—virtual models of our material handling systems—to simulate different scenarios and optimise performance. This helps us identify bottlenecks and inefficiencies before they impact production. The adoption of these Industry 4.0 technologies not only improves operational efficiency but also enhances safety, reduces costs, and contributes to the overall sustainability of our cement manufacturing process.

What are the primary challenges you face in handling alternative raw materials or fuels (such as waste, biomass, or fly ash), and how have you adapted your material handling infrastructure to manage these new inputs?
Handling alternative raw materials and fuels, such as waste, biomass, and fly ash, presents unique challenges due to their varying properties compared to traditional inputs. At Wonder Cement, we have adapted our material handling infrastructure to manage these challenges effectively. One of the main issues is the irregular particle size and moisture content of alternative materials, which can affect the flow and handling efficiency. To address this, we have implemented specialised conveyors and storage systems designed to accommodate the diverse characteristics of these materials. For example, we have modified our storage silos and hoppers to ensure smoother material flow and prevent blockages or clumping. In addition, we utilise advanced weighing and dosing systems to ensure precise control over the input of alternative materials, maintaining the consistency and quality of our cement.
Another challenge is the higher tendency of alternative fuels, such as biomass, to produce dust and emissions. To counter this, we have upgraded our dust suppression systems and installed filters at key transfer points. This ensures that the environmental impact of using alternative materials is minimised. Furthermore, we continuously monitor and fine-tune our material handling processes through data analytics and IoT-based systems, enabling us to adapt to the specific requirements of alternative materials. By investing in this infrastructure, we are able to incorporate sustainable materials into our production processes without compromising efficiency or
product quality.

What role do preventive maintenance and condition monitoring play in your material handling operations, and how does this contribute to minimising downtime and enhancing equipment lifespan?
Preventive maintenance and condition monitoring are integral to Wonder Cement’s approach to material handling operations. We employ a proactive maintenance strategy that focuses on regular inspections, timely servicing, and the early detection of potential issues to ensure the longevity and efficiency of our equipment. Condition monitoring systems, such as vibration analysis, temperature sensors, and oil analysis, are used to track the health of our material handling equipment in real time. By continuously monitoring the performance of critical components like conveyor belts, motors, and bearings, we can identify early signs of wear or malfunction. This allows us to schedule maintenance before a failure occurs, significantly reducing unplanned downtime and preventing costly breakdowns.
In addition, predictive maintenance tools, powered by AI and data analytics, enable us to predict when specific equipment will require servicing based on historical performance data. This not only enhances the lifespan of our machinery but also optimises maintenance schedules, ensuring that equipment is serviced only when necessary, thus avoiding unnecessary downtime. Preventive maintenance also improves safety, as it reduces the likelihood of accidents caused by equipment failure. Ultimately, by adopting these strategies, we can maintain a high level of operational efficiency, minimise production interruptions, and extend the service life of our material handling systems.

Looking forward, what future trends do you foresee in material handling for the cement industry, and how is your company preparing to adopt these advancements to stay competitive?
As the cement industry continues to evolve, several key trends in material handling are likely to shape the future. One of the most significant trends is the increased adoption of digitalisation and automation, driven by Industry 4.0 technologies. At Wonder Cement, we are preparing for this shift by investing in IoT, AI, and robotics to enhance the efficiency, safety, and sustainability of our material handling processes. Another emerging trend is the use of alternative raw materials and fuels, as the industry moves towards more sustainable production practices. We are adapting our material handling infrastructure to accommodate these new inputs, such as waste-derived fuels and biomass, which require specialised equipment and handling techniques.
Energy efficiency and emissions reduction will also be key focuses in the coming years. We foresee a greater emphasis on energy-efficient motors, renewable energy sources, and advanced dust suppression technologies to minimise the environmental impact of material handling. Our commitment to sustainability is evident in our continuous efforts to reduce energy consumption and implement cleaner technologies across our operations. Additionally, predictive maintenance and advanced analytics will play an increasingly important role in optimising equipment performance and minimising downtime. By staying at the forefront of these trends and integrating them into our operations, Wonder Cement is well-positioned to remain competitive in an evolving industry while maintaining our commitment to innovation and sustainability.

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares
The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares
JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares

Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News