Connect with us

Concrete

Driving Sustainability Through Technology

Published

on

Shares

The smart integration of artificial intelligence, technology and data analytics not only improves operational efficiency but also supports the cement industry’s commitment to sustainability by reducing emissions, enhancing material efficiency and aligning with global environmental objectives. ICR looks at the latest technological innovations that help optimise sustainable efforts of the stakeholders of the cement industry through predictive maintenance and real-time monitoring.

Sustainability refers to the ability to meet the needs of the present without compromising the ability of future generations to meet their own needs. It involves a balanced and responsible use of resources, considering environmental, social, and economic factors. The concept of sustainability recognises the interconnectedness of these three pillars—environmental, social, and economic—and aims to create a harmonious and enduring system that benefits both current and future generations.
India is the second-largest producer of cement in the world. The current emphasis on infrastructure development in the country is expected to drive cement demand further. The Indian cement industry has established itself as one of the frontrunners in driving efficiency measures and setting ambitious net-zero targets. The successful implementation of the PAT scheme has played a key role in adopting energy-efficient technologies.
According to the report, Evaluating Net Zero for the Indian Cement Industry, published by Council of Energy, Environment and Water, October 2023, the cumulative CO2 emissions from manufacturing 337 million tonnes of cement in 2018-19 were estimated at 218 million tonnes. Baseline estimates show that nearly 56 per cent of the total 0.66 tonnes of CO2 per tonne of cement produced is due to the calcination of limestone in the kilns. Most of the remaining emissions, 32 per cent is due to the combustion of fuels for process-heating applications, while only 12 per cent is due to the electricity used for manufacturing. The analysis indicates that, with the adoption of only those decarbonisation measures that have a negative cost of mitigation, the cost of cement reduces by three per cent while its emission intensity decreases by 20 per cent. Further, with the use of measures that have a positive cost of mitigation, a breakeven can be achieved with the current cost by reducing the emissions intensity by 32 per cent. The net-zero cost of cement is estimated to increase by 19–107 per cent, depending on the cost of CCS (carbon capture and storage) and CCU (carbon capture and utilisation). Energy efficiency in cement production will have a limited effect on emission reduction at 9 per cent. The use of renewable energy, alternative fuels and raw materials has the potential to abate 13 per cent of cement emissions, while reduction in clinker factor will reduce another 11 per cent. However, 67 per cent of the cement industry’s emissions would need to be abated through carbon management techniques like CCUS and carbon offsetting.

Real-time monitoring of energy consumption patterns, allow for data-driven decision-making, thus, enhancing energy efficiency and reducing carbon emissions.

ALTERNATIVE FUELS AND RAW MATERIALS
The adoption of alternative fuels and raw materials in the cement industry is a dynamic area driven by the need for sustainability and resource efficiency. As technology advances and regulatory frameworks evolve, the industry is likely to explore and implement new solutions to reduce its environmental footprint.
Ajay Kapur, CEO – Cement Business, Adani Group, says, “Being an energy-intensive sector, cement manufacturers have started investing in cleaner sources of energy like solar and wind as captive generation units to run their plants. This shift in no small measure is supported by the falling cost of renewable energy India. Between 2010 and now, the cost of solar modules in India have dropped by more than 80 per cent, making it one of the most sought-after sources of clean energy for large industrial units including cement. Similar efforts are also on to move finished cement, packed and bulk on more sustainable or green logistics like soya extract-based biofuel powered shipping. Bulk terminals and grinding units along India’s long coastline can enable the movement of clinker and cement through the sea route at the lowest possible cost.”
The use of alternative fuels and raw materials is a key strategy to enhance sustainability by reducing environmental impact and conserving natural resources. Cement manufacturing is energy-intensive, and the production of clinker—the key ingredient in cement—requires significant amounts of heat, primarily obtained by burning fossil fuels. Making the energy usage in the cement industry more sustainable involves improving efficiency, reducing carbon emissions, and exploring alternative energy sources. The transition to sustainable energy use in the cement industry requires a holistic approach that encompasses technological advancements, changes in operational practices, and collaboration across the supply chain. Continued research, investment, and a commitment to sustainability will be essential for the industry to achieve meaningful progress in making its energy use more sustainable.
The Indian cement industry has been increasingly incorporating sustainable energy sources to reduce its environmental impact and enhance energy efficiency. One notable source is renewable energy, particularly solar power. Many cement plants in India have started harnessing solar energy through on-site solar installations. For instance, UltraTech Cement, one of India’s largest cement producers, has adopted solar power solutions across multiple plants. The organisation has commissioned more than 25 megawatts (MW) of solar power capacity and aimed to increase this to 130 MW by 2022. This transition to solar energy not only reduces the industry’s reliance on conventional power sources but also contributes to a significant decrease in greenhouse gas emissions associated with electricity consumption. The adoption of sustainable energy sources is likely to continue as the Indian cement industry strives to meet its sustainability goals and align with the country’s commitment to renewable energy expansion.
Vimal Kumar Jain, Director – Technical, HeidelbergCement India, says, “The production of cement requires a high degree of thermal energy. The traditional fuels used in the kilns are coal, oil, petroleum coke etc. The substitution of fossil fuels by alternative fuels in the production of cement clinker is of great importance for society and climate control because it conserves fossil fuel reserves and reduces greenhouse gas emissions.”
“We are aiming to maximise the usage of alternative fuels such as Industrial wastes, plastics, used tires, biomass wastes and municipal wastes thus replacing conventional fuels,” he adds.
The Indian cement industry primarily relies on a set of key raw materials for cement production. These include limestone, clay, shale, silica sand, and iron ore. Limestone is the predominant raw material and serves as a crucial source of calcium, an essential component in the production of clinker—the main ingredient in cement. The use of these raw materials contributes to the sustainability of the Indian cement industry in several ways.
Firstly, limestone and other raw materials are abundant in India, reducing the industry’s dependence on imported resources. This enhances the sector’s resilience and minimises the environmental impact associated with transportation. Additionally, the incorporation of certain industrial by-products and alternative raw materials, such as fly ash and slag, into cement production helps reduce the demand for traditional raw materials and promotes a more circular economy. This approach not only conserves natural resources but also mitigates the environmental footprint of cement manufacturing.


According to data from the Cement Manufacturers’ Association of India, as of 2021, the share of alternative raw materials in the total raw material consumption in the Indian cement industry was around 12 per cent, indicative of a growing trend towards more sustainable and resource-efficient practices within the sector.
Dr SB Hegde, Professor, Jain University, and Visiting Professor, Pennsylvania State University, USA, says, “Supplementary cement materials (SCMs) and creative ideas like Calcined Clay Clinker (LC3) are making a big difference. These different materials are transforming the way things are done. For example, in India, where the cement industry is one of the largest carbon emitters, LC3 technology, which incorporates calcined clays into cement, has been demonstrated to reduce CO2 emissions by up to 30 per cent and substantially decrease energy consumption during the clinker production process.”
“By 2050, it is estimated that the implementation of such alternative materials could help the cement sector reduce its global CO2 emissions by up to 16 per cent,” he adds.

CLIMATE TECHNOLOGY
New technologies represent a critical part of the world’s decabonisation mission. According to McKinsey’s article – Innovating to Net Zero: An Executive’s Guide To Climate Technology, 2021, the need for climate technology is vast—which creates large potential markets and investment opportunities. McKinsey estimates that next-generation technologies could attract $1.5 trillion to $2 trillion of capital investment per year by 2025.
These climate technologies could contribute to solving the net-zero equation while creating growth potential for sectors and geographies. At present, the technologies exhibit varying levels of maturity, performance, market demand and regulatory support. To bring them to commercial, climate-stabilising scale would require companies, financial institutions, and governments to cooperate on investment and research programmes as well as efforts to integrate technologies with existing industrial systems.
“Cement plants have adopted technologies to meet the new emission norms for PM, SO2 and NOX emissions. Plants have installed highly efficient
bag filters, ESPs, and hybrid filters to control dust emissions. For NOX reduction, plants have installed secondary control measures like SNCR. All the cement plants have installed a Continuous Emission Monitoring System (CEMS) as per the guidelines of CPCB,”
says Dr BN Mohapatra, Advisor and Consultant, UltraTech Cement.
“In the same spirit, the cement industry is the first one to adopt filtration technologies like pulse Jet Bag House (PJBH) reverse air bag house and hybrid filters for controlling dust emission from stack. Advent of new fabrics which can withstand higher temperatures and tough working conditions. Controls and advanced electrical systems provided the opportunity to reduce the dust emissions to very low levels. Cement industry embraced these technologies that helped industry today in achieving consistent and lower stack emissions of 30 mg/Nm3,” he adds.

AI, TECH AND DATA
The integration of artificial intelligence (AI), technology and data analytics plays a crucial role in enhancing the sustainability of cement manufacturing.
Pankaj Kejriwal, Executive Director, Star Cement, says, “Artificial Intelligence (AI) solutions can be used to assess, predict, and mitigate climate change and support sustainable waste management. For example, AI techniques can be used to monitor environmental issues like CO2 emission. The data gathered from this is then processed, leveraging machine learning techniques, to predict environmental changes. Adaptive systems and continuous intelligence techniques are used to regularly adjust business and engineering systems to cope with environmental changes and challenges.”
“When it comes to waste management and accelerating recycling processes, AI techniques have also become commonplace. Perspective analytics and market knowledge graphs are used to map the movement of waste materials and reduce unnecessary shipping while improving material reuse,” he adds.
AI plays a pivotal role in optimising various facets of the production process, enabling more efficient resource utilisation and energy management. Advanced process control systems driven by AI algorithms enhance the precision of operations, leading to optimised raw material preparation, clinker production, and cement grinding. Predictive maintenance, powered by AI, helps prevent equipment failures, reducing downtime and ensuring more reliable and sustainable operations.
Technology facilitates real-time monitoring of energy consumption patterns, allowing for data-driven decision-making to enhance energy efficiency and reduce carbon emissions. Supply chain optimisation through AI-driven logistics not only minimises operational costs but also contributes to a reduction in the overall carbon footprint associated with transportation. AI and data analytics are instrumental in monitoring and controlling emissions, ensuring compliance with environmental standards.
“The share of green energy is enhanced through investments in Waste Heat Recovery Systems (WHRS). These systems not only adhere to the principles of the circular economy but also result in fossil fuels savings. This not only nurtures a more cost-efficient process but also directly impacts the bottom line,” says Ajay Kapur, CEO – Cement Business, Adani Group.
Moreover, these technologies aid in material efficiency by optimising the use of raw materials and exploring alternative resources, contributing to a circular economy. Life cycle assessments, powered by data analytics, allow manufacturers to evaluate and improve the environmental impact of their products. In research and development, AI analyses extensive datasets to identify innovative solutions, fostering the evolution of sustainable practices in cement production. Ultimately, the smart integration of AI, technology, and data in the cement industry is a transformative force, driving efficiency, reducing environmental impact, and bolstering the sector’s commitment to sustainability.
According to Tushar Kulkarni, Business Head – Minerals, Cement & Mining, Siemens Large Drivers India: “The main difference between a data-centric solution and traditional expert systems is the development of a dedicated machine learning-based kiln model that provides more accurate insights into future kiln process trends than traditional approaches. The latter typically provides insights that are based on a generic mathematical toolbox and a simple aggregation of recent historical data. Advanced Process Control (APC) is widely used to improve kiln and mill control. However, in practice, the limitations of the current APC approach are apparent. For instance, a typical fuzzy logic is not able to cover all operating scenarios and is sensitive to operational changes. A typical Model Predictive Control (MPC) uses linear models in most cases and any change in equipment leads to a completely new setting of the model.”
“In contrast, by incorporating long-term data sets for AI training, the trained AI models can learn from the past and establish correlations between parameters and time and between actions and outcomes. This knowledge, accumulated in the models, forms the basis for better control performance,” he adds.
Anuj Khandelwal, Business Head, JK Cement, says, “Scaling sustainability initiatives requires automation and digital solutions. This is a critical part of our capability build as we move towards the new clean-tech solutions offered. For instance, real-time power balancing solutions address the variability in green power generation profiles. Digital load and demand balancing solutions have increased the usage of green power, helping us achieve a remarkable 48 per cent+ green power mix for JK Cement in H1FY24.”
“Similarly addressing challenges associated with quality variance in alternate fuels and impact on stable kiln operations required innovative solutions. NIR sensors for online quality testing enable precise control over the alternative fuel blend. In parallel, automated feedback loops helped ensure stable kiln operations even at higher TSR levels. Investments in digital quality control systems enable the incorporation of higher alternate raw materials, crucial for maintaining product quality amid the variability of alternate materials,” he adds.
The adoption of AI, technology, and data-driven approaches in the cement manufacturing sector not only improves operational efficiency but also significantly contributes to the industry’s sustainability goals. By leveraging these technologies, cement plants can reduce resource consumption, lower emissions, and embrace more eco-friendly practices throughout the entire production process.

CONCLUSION
Technology plays a pivotal role in driving sustainability within the Indian cement industry. It emphasises the adoption of advanced technologies, such as AI, data analytics and automation, to optimise various aspects of cement manufacturing. The integration of AI facilitates real-time monitoring and control of energy consumption, leading to increased efficiency and reduced carbon emissions.
Predictive maintenance technologies ensure equipment reliability, minimising downtime and resource wastage. The use of data analytics allows for precise supply chain optimisation, contributing to lower operational costs and reduced environmental impact associated with transportation. The article underscores how these technological advancements support material efficiency by optimising raw material usage and exploring alternative resources.
Furthermore, life cycle assessments, powered by data analytics, enable manufacturers to evaluate and enhance the sustainability of their products. The overarching theme is that technology-driven solutions are instrumental in transforming the Indian cement industry, fostering sustainability, and aligning with global environmental goals.

  • Kanika Mathur

Concrete

Balancing Rapid Economic Growth and Climate Action

Published

on

By

Shares



Dr Yogendra Kanitkar, VP R&D, and Dr Shirish Kumar Sharma, Assistant Manager R&D, Pi Green Innovations, look at India’s cement industry as it stands at the crossroads of infrastructure expansion and urgent decarbonisation.

The cement industry plays an indispensable role in India’s infrastructure development and economic growth. As the world’s second-largest cement producer after China, India accounts for more than 8 per cent of global cement production, with an output of around 418 million tonnes in 2023–24. It contributes roughly 11 per cent to the input costs of the construction sector, sustains over one million direct jobs, and generates an estimated 20,000 additional downstream jobs for every million tonnes produced. This scale makes cement a critical backbone of the nation’s development. Yet, this vitality comes with a steep environmental price, as cement production contributes nearly 7 per cent of India’s total carbon dioxide (CO2) emissions.
On a global scale, the sector accounts for 8 per cent of anthropogenic CO2 emissions, a figure that underscores the urgency of balancing rapid growth with climate responsibility. A unique challenge lies in the dual nature of cement-related emissions: about 60 per cent stem from calcination of limestone in kilns, while the remaining 40 per cent arise from the combustion of fossil fuels to generate the extreme heat of 1,450°C required for clinker production (TERI 2023; GCCA).
This dilemma is compounded by India’s relatively low per capita consumption of cement at about 300kg per year, compared to the global average of 540kg. The data reveals substantial growth potential as India continues to urbanise and industrialise, yet this projected rise in consumption will inevitably add to greenhouse gas emissions unless urgent measures are taken. The sector is also uniquely constrained by being a high-volume, low-margin business with high capital intensity, leaving limited room to absorb additional costs for decarbonisation technologies.
India has nonetheless made notable progress in improving the carbon efficiency of its cement industry. Between 1996 and 2010, the sector reduced its emissions intensity from 1.12 tonnes of CO2 per ton of cement to 0.719 tonnes—making it one of the most energy-efficient globally. Today, Indian cement plants reach thermal efficiency levels of around 725 kcal/kg of clinker and electrical consumption near 75 kWh per tonne of cement, broadly in line with best global practice (World Cement 2025). However, absolute emissions continue to rise with increasing demand, with the sector emitting around 177 MtCO2 in 2023, about 6 per cent of India’s total fossil fuel and industrial emissions. Without decisive interventions, projections suggest that cement manufacturing emissions in India could rise by 250–500 per cent by mid-century, depending on demand growth (Statista; CEEW).
Recognising this threat, the Government of India has brought the sector under compliance obligations of the Carbon Credit Trading Scheme (CCTS). Cement is one of the designated obligated entities, tasked with meeting aggressive reduction targets over the next two financial years, effectively binding companies to measurable progress toward decarbonisation and creating compliance-driven demand for carbon reduction and trading credits (NITI 2025).
The industry has responded by deploying incremental decarbonisation measures focused on energy efficiency, alternative fuels, and material substitutions. Process optimisation using AI-driven controls and waste heat recovery systems has made many plants among the most efficient worldwide, typically reducing fuel use by 3–8 per cent and cutting emissions by up to 9 per cent. Trials are exploring kiln firing with greener fuels such as hydrogen and natural gas. Limited blends of hydrogen up to 20 per cent are technically feasible, though economics remain unfavourable at present.
Efforts to electrify kilns are gaining international attention. For instance, proprietary technologies have demonstrated the potential of electrified kilns that can reach 1,700°C using renewable electricity, a transformative technology still at the pilot stage. Meanwhile, given that cement manufacturing is also a highly power-intensive industry, several firms are shifting electric grinding operations to renewable energy.
Material substitution represents another key decarbonisation pathway. Blended cements using industrial by-products like fly ash and ground granulated blast furnace slag (GGBS) can significantly reduce the clinker factor, which currently constitutes about 65 per cent in India. GGBS can replace up to 85 per cent of clinker in specific cement grades, though its future availability may fall as steel plants decarbonise and reduce slag generation. Fly ash from coal-fired power stations remains widely used as a low-carbon substitute, but its supply too will shrink as India expands renewable power. Alternative fuels—ranging from biomass to solid waste—further allow reductions in fossil energy dependency, abating up to 24 per cent of emissions according to pilot projects (TERI; CEEW).
Beyond these, Carbon Capture, Utilisation, and Storage (CCUS) technologies are emerging as a critical lever for achieving deep emission cuts, particularly since process emissions are chemically unavoidable. Post-combustion amine scrubbing using solvents like monoethanolamine (MEA) remains the most mature option, with capture efficiencies between 90–99 per cent demonstrated at pilot scale. However, drawbacks include energy penalties that require 15–30 per cent of plant output for solvent regeneration, as well as costs for retrofitting and long-term corrosion management (Heidelberg Materials 2025). Oxyfuel combustion has been tested internationally, producing concentrated CO2-laden flue gas, though the high cost of pure oxygen production impedes deployment in India.
Calcium looping offers another promising pathway, where calcium oxide sorbents absorb CO2 and can be regenerated, but challenges of sorbent degradation and high calcination energy requirements remain barriers (DNV 2024). Experimental approaches like membrane separation and mineral carbonation are advancing in India, with startups piloting systems to mineralise flue gas streams at captive power plants. Besides point-source capture, innovations such as CO2 curing of concrete blocks already show promise, enhancing strength and reducing lifecycle emissions.
Despite progress, several systemic obstacles hinder the mass deployment of CCUS in India’s cement industry. Technology readiness remains a fundamental issue: apart from MEA-based capture, most technologies are not commercially mature in high-volume cement plants. Furthermore, CCUS is costly. Studies by CEEW estimate that achieving net-zero cement in India would require around US$ 334 billion in capital investments and US$ 3 billion annually in operating costs by 2050, potentially raising cement prices between 19–107 per cent. This is particularly problematic for an industry where companies frequently operate at capacity utilisations of only 65–70 per cent and remain locked in fierce price competition (SOIC; CEEW).
Building out transport and storage infrastructure compounds the difficulty, since many cement plants lie far from suitable geological CO2 storage sites. Moreover, retrofitting capture plants onto operational cement production lines adds technical integration struggles, as capture systems must function reliably under the high-particulate and high-temperature environment of cement kilns.
Overcoming these hurdles requires a multi-pronged approach rooted in policy, finance, and global cooperation. Policy support is vital to bridge the cost gap through instruments like production-linked incentives, preferential green cement procurement, tax credits, and carbon pricing mechanisms. Strategic planning to develop shared CO2 transport and storage infrastructure, ideally in industrial clusters, would significantly lower costs and risks. International coordination can also accelerate adoption.
The Global Cement and Concrete Association’s net-zero roadmap provides a collaborative template, while North–South technology transfer offers developing countries access to proven technologies. Financing mechanisms such as blended finance, green bonds tailored for cement decarbonisation and multilateral risk guarantees will reduce capital barriers.
An integrated value-chain approach will be critical. Coordinated development of industrial clusters allows multiple emitters—cement, steel, and chemicals—to share common CO2 infrastructure, enabling economies of scale and lowering unit capture costs. Public–private partnerships can further pool resources to build this ecosystem. Ultimately, decarbonisation is neither optional nor niche for Indian cement. It is an imperative driven by India’s growth trajectory, environmental sustainability commitments, and changing global markets where carbon intensity will define trade competitiveness.
With compliance obligations already mandated under CCTS, the cement industry must accelerate decarbonisation rapidly over the next two years to meet binding reduction targets. The challenge is to balance industrial development with ambitious climate goals, securing both economic resilience and ecological sustainability. The pathway forward depends on decisive governmental support, cross-sectoral innovation, global solidarity, and forward-looking corporate action. The industry’s future lies in reframing decarbonisation not as a burden but as an investment in competitiveness, climate alignment and social responsibility.

References

  • Infomerics, “Indian Cement Industry Outlook 2024,” Nov 2024.
  • TERI & GCCA India, “Decarbonisation Roadmap for the Indian Cement Industry,” 2023.
  • UN Press Release, GA/EF/3516, “Global Resource Efficiency and Cement.”
  • World Cement, “India in Focus: Energy Efficiency Gains,” 2025.
  • Statista, “CO2 Emissions from Cement Manufacturing 2023.”
  • Heidelberg Materials, Press Release, June 18, 2025.
  • CaptureMap, “Cement Carbon Capture Technologies,” 2024.
  • DNV, “Emerging Carbon Capture Techniques in Cement Plants,” 2024.
  • LEILAC Project, News Releases, 2024–25.
  • PMC (NCBI), “Membrane-Based CO2 Capture in Cement Plants,” 2024.
  • Nature, “Carbon Capture Utilization in Cement and Concrete,” 2024.
  • ACS Industrial Engineering & Chemistry Research, “CCUS Integration in Cement Plants,” 2024.
  • CEEW, “How Can India Decarbonise for a Net-Zero Cement Industry?” (2025).
  • SOIC, “India’s Cement Industry Growth Story,” 2025.
  • MDPI, “Processes: Challenges for CCUS Deployment in Cement,” 2024.
  • NITI Aayog, “CCUS in Indian Cement Sector: Policy Gaps & Way Forward,” 2025.

ABOUT THE AUTHOR:
Dr Yogendra Kanitkar, Vice President R&D, Pi Green Innovations, drives sustainable change through advanced CCUS technologies and its pioneering NetZero Machine, delivering real decarbonisation solutions for hard-to-abate sectors.

Dr Shirish Kumar Sharma, Assitant Manager R&D, Pi Green Innovations, specialises in carbon capture, clean energy, and sustainable technologies to advance impactful CO2 reduction solutions.

Continue Reading

Concrete

Carbon Capture Systems

Published

on

By

Shares



Nathan Ashcroft, Director, Strategic Growth, Business Development, and Low Carbon Solutions – Stantec, explores the challenges and strategic considerations for cement industry as it strides towards Net Zero goals.

The cement industry does not need a reminder that it is among the most carbon-intensive sectors in the world. Roughly 7–8 per cent of global carbon dioxide (CO2) emissions are tied to cement production. And unlike many other heavy industries, a large share of these emissions come not from fuel but from the process itself: the calcination of limestone. Efficiency gains, fuel switching, and renewable energy integration can reduce part of the footprint. But they cannot eliminate process emissions.
This is why carbon capture and storage (CCS) has become central to every serious discussion
about cement’s pathway to Net Zero. The industry already understands and accepts this challenge.
The debate is no longer whether CCS will be required—it is about how fast, affordable, and seamlessly it can be integrated into facilities that were never designed for it.

In many ways, CCS represents the ‘last mile’of cement decarbonisation. Once the sector achieves effective capture at scale, the most difficult part of its emissions profile will have been addressed. But getting there requires navigating a complex mix of technical, operational, financial and regulatory considerations.

A unique challenge for cement
Cement plants are built for durability and efficiency, not for future retrofits. Most were not designed with spare land for absorbers, ducting or compression units. Nor with the energy integration needs of capture systems in mind. Retrofitting CCS into these existing layouts presents a series of non-trivial challenges.
Reliability also weighs heavily in the discussion. Cement production runs continuously, and any disruption has significant economic consequences. A CCS retrofit typically requires tie-ins to stacks and gas flows that can only be completed during planned shutdowns. Even once operational, the capture system must demonstrate high availability. Otherwise, producers may face the dual cost of capture downtime and exposure to carbon taxes or penalties, depending on jurisdiction.
Despite these hurdles, cement may actually be better positioned than some other sectors. Flue gas from cement kilns typically has higher CO2 concentrations than gas-fired power plants, which improves capture efficiency. Plants also generate significant waste heat, which can be harnessed to offset the energy requirements of capture units. These advantages give the industry reason to be optimistic, provided integration strategies are carefully planned.

From acceptance to implementation
The cement sector has already acknowledged the inevitability of CCS. The next step is to turn acceptance into a roadmap for action. This involves a shift from general alignment around ‘the need’ toward project-level decisions about technology, layout, partnerships and financing.
The critical questions are no longer about chemistry or capture efficiency. They are about the following:

  • Space and footprint: Where can capture units be located? And how can ducting be routed in crowded plants?
  • Energy balance: How can capture loads be integrated without eroding plant efficiency?
  • Downtime and risk: How will retrofits be staged to avoid prolonged shutdowns?
  • Financing and incentives: How will capital-intensive projects be funded in a sector with
    tight margins?
  • Policy certainty: Will governments provide the clarity and support needed for long-term investment
  • Technology advancement: What are the latest developments?
  • All of these considerations are now shaping the global CCS conversation in cement.

Economics: The central barrier
No discussion of CCS in the cement industry is complete without addressing cost. Capture systems are capital-intensive, with absorbers, regenerators, compressors, and associated balance-of-plant representing a significant investment. Operational costs are dominated by energy consumption, which adds further pressure in competitive markets.
For many producers, the economics may seem prohibitive. But the financial landscape is changing rapidly. Carbon pricing is becoming more widespread and will surely only increase in the future. This makes ‘doing nothing’ an increasingly expensive option. Government incentives—ranging from investment tax credits in North America to direct funding in Europe—are accelerating project viability. Some producers are exploring CO2 utilisation, whether in building materials, synthetic fuels, or industrial applications, as a way to offset costs. This is an area we will see significantly more work in the future.
Perhaps most importantly, the cost of CCS itself is coming down. Advances in novel technologies, solvents, modular system design, and integration strategies are reducing both capital requirements
and operating expenditures. What was once prohibitively expensive is now moving into the range of strategic possibility.
The regulatory and social dimension
CCS is not just a technical or financial challenge. It is also a regulatory and social one. Permitting requirements for capture units, pipelines, and storage sites are complex and vary by jurisdiction. Long-term monitoring obligations also add additional layers of responsibility.
Public trust also matters. Communities near storage sites or pipelines must be confident in the safety and environmental integrity of the system. The cement industry has the advantage of being widely recognised as a provider of essential infrastructure. If producers take a proactive role in transparent engagement and communication, they can help build public acceptance for CCS
more broadly.

Why now is different
The cement industry has seen waves of technology enthusiasm before. Some have matured, while others have faded. What makes CCS different today? The convergence of three forces:
1. Policy pressure: Net Zero commitments and tightening regulations are making CCS less of an option and more of an imperative.
2. Technology maturity: First-generation projects in power and chemicals have provided valuable lessons, reducing risks for new entrants.
3. Cost trajectory: Capture units are becoming smaller, smarter, and more affordable, while infrastructure investment is beginning to scale.
This convergence means CCS is shifting from concept to execution. Globally, projects are moving from pilot to commercial scale, and cement is poised to be among the beneficiaries of this momentum.

A global perspective
Our teams at Stantec recently completed a global scan of CCS technologies, and the findings are encouraging. Across solvents, membranes, and
hybrid systems, innovation pipelines are robust. Modular systems with reduced footprints are
emerging, specifically designed to make retrofits more practical.
Equally important, CCS hubs—where multiple emitters can share transport and storage infrastructure—are beginning to take shape in key regions. These hubs reduce costs, de-risk storage, and provide cement producers with practical pathways to integration.

The path forward
The cement industry has already accepted the challenge of carbon capture. What remains is charting a clear path to implementation. The barriers—space, cost, downtime, policy—are real. But they are not insurmountable. With costs trending downward, technology footprints shrinking, and policy support expanding, CCS is no longer a distant aspiration.
For cement producers, the decision is increasingly about timing and positioning. Those who move early can potentially secure advantages in incentives, stakeholder confidence, and long-term competitiveness. Those who delay may face higher costs and tighter compliance pressures.
Ultimately, the message is clear: CCS is coming to cement. The question is not if but how soon. And once it is integrated, the industry’s biggest challenge—process emissions—will finally have a solution.

ABOUT THE AUTHOR:
Nathan Ashcroft, Director, Strategic Growth, Business Development, and Low Carbon Solutions – Stantec, holds expertise in project management, strategy, energy transition, and extensive international leadership experience.

Continue Reading

Concrete

The Green Revolution

Published

on

By

Shares



MM Rathi, Joint President – Power Management, Shree Cement, discusses the 3Cs – cut emissions, capture carbon and cement innovation – that are currently crucial for India’s cement sector to achieve Net Zero goals.

India’s cement industry is a backbone of growth which stand strong to lead the way towards net zero. From highways and housing to metros and mega cities, cement has powered India’s rise as the world’s second-largest producer with nearly 600 million tonnes annual capacity. Yet this progress comes with challenges: the sector contributes around 5 per cent of national greenhouse gas emissions, while also facing volatile fuel prices, raw material constraints, and rising demand from rapid urbanisation.
This dual role—driving development while battling emissions—makes cement central to India’s Net Zero journey. The industry cannot pause growth, nor can it ignore climate imperatives. As India pursues its net-zero 2070 pledge, cement must lead the way. The answer lies in the 3Cs Revolution—Cut Emissions, Cement Innovation, Capture Carbon. This framework turns challenges into opportunities, ensuring cement continues to build India’s future while aligning with global sustainability goals.

Cut: Reducing emissions, furnace by furnace
Cement production is both energy- and carbon-intensive, but India has steadily emerged as one of the most efficient producers worldwide. A big part of this progress comes from the widespread use of blended cements, which now account for more than 73 per cent of production. By lowering the clinker factor to around 0.65, the industry is able to avoid nearly seven million tonnes of CO2 emissions every year. Alongside this, producers are turning to alternative fuels and raw materials—ranging from biomass and municipal waste to refuse-derived fuels—to replace conventional fossil fuels in kilns.
Efficiency gains also extend to heat and power. With over 500 MW of waste heat recovery systems already installed, individual plants are now able to generate 15–18 MW of electricity directly from hot exhaust gases that would otherwise go to waste. On the renewable front, the sector is targeting about 10 per cent of its power needs from solar and wind by FY26, with a further 4–5 GW of capacity expected by 2030. To ensure that this renewable power is reliable, companies are signing round-the-clock supply contracts that integrate solar and wind with battery energy storage systems (BESS). Grid-scale batteries are also being explored to balance the variability of renewables and keep kiln operations running without interruption.
Even logistics is being reimagined, with a gradual shift away from diesel trucks toward railways, waterways, and CNG-powered fleets, reducing both emissions and supply chain congestion. Taken together, these measures are not only cutting emissions today but also laying the foundation for future breakthroughs such as green hydrogen-fueled kiln operations.

Cement: Innovations that bind
Innovation is transforming the way cement is produced and used, bringing efficiency, strength, and sustainability together. Modern high-efficiency plants now run kilns capable of producing up to 13,500 tonnes of clinker per day. With advanced coolers and pyro systems, they achieve energy use as low as 680 kilocalories per kilogram of heat and just 42 kilowatt-hours of power per tonne of clinker. By capturing waste heat, these plants are also able to generate 30–35 kilowatt-hours of electricity per tonne, bringing the net power requirement down to only 7–12 kilowatt-hours—a major step forward in energy efficiency.
Grinding technology has also taken a leap. Next-generation mills consume about 20 per cent less power while offering more flexible operations, allowing producers to fine-tune processes quickly and reduce energy costs. At the same time, the use of supplementary cementitious materials (SCMs) such as fly ash, slag and calcined clays is cutting clinker demand without compromising strength. New formulations like Limestone Calcined Clay Cement (LC3) go even further, reducing emissions by nearly 30 per cent while delivering stronger, more durable concrete.
Digitalisation is playing its part as well. Smart instrumentation, predictive maintenance, and automated monitoring systems are helping plants operate more smoothly, avoid costly breakdowns, and maintain consistent quality while saving energy. Together, these innovations not only reduce emissions but also enhance durability, efficiency, and cost-effectiveness, proving that sustainability and performance can go hand in hand.

Carbon: Building a better tomorrow
Even with major efficiency gains, most emissions from cement come from the chemical process of turning limestone into clinker—emissions that cannot be avoided without carbon capture. To address this, the industry is moving forward on several fronts. Carbon Capture, Utilisation and Storage (CCUS) pilots are underway, aiming to trap CO2 at the source and convert it into useful products such as construction materials and industrial chemicals.
At the same time, companies are embracing circular practices. Rainwater harvesting, wastewater recycling, and the use of alternative raw materials are becoming more common, especially as traditional sources like fly ash become scarcer. Policy and market signals are reinforcing this transition: efficiency mandates, green product labels and emerging carbon markets are pushing producers to accelerate the shift toward low-carbon cements.
Ultimately, large-scale carbon capture will be essential if the sector is to reach true net-zero
cement, turning today’s unavoidable emissions into tomorrow’s opportunities.

The Horizon: What’s next
By 2045, India’s cities are expected to welcome another 250 million residents, a wave of urbanisation that will push cement demand nearly 420 million tonnes by FY27 and keep rising in the decades ahead. The industry is already preparing for this future with a host of forward-looking measures. Trials of electrified kilns are underway to replace fossil fuel-based heating, while electric trucks are being deployed both in mining operations and logistics to reduce transport emissions. Inside the plants, AI-driven systems are optimising energy use and operations, and circular economy models are turning industrial by-products from other sectors into valuable raw materials for cement production. On the energy front, companies are moving toward 100 per cent renewable power, supported by advanced battery storage to ensure reliability around the clock.
This vision goes beyond incremental improvements. The 3Cs Revolution—Cut, Cement, Carbon is about building stronger, smarter, and more sustainable foundations for India’s growth. Once seen as a hard-to-abate emitter, the cement sector is now positioning itself as a cornerstone of India’s climate strategy. By cutting emissions, driving innovations and capturing carbon, it is laying the groundwork for a net-zero future.
India’s cement sector is already among the most energy-efficient in the world, proving that growth and responsibility can go hand in hand. By cutting emissions, embracing innovation, and advancing carbon capture, we are not just securing our net-zero future—we are positioning India as a global leader in sustainable cement.

ABOUT THE AUTHOR:
MM Rathi, Joint President – Power Management, Shree Cement, comes with extensive expertise in commissioning and managing over 1000 MW of thermal, solar, wind, and waste heat power plants.

Continue Reading

Trending News