Connect with us

Concrete

Design for Solid Alternative Fuels

Published

on

Shares

Kapil Kukreja, Group Manager; Dr D K Panda, Joint Director; and Bharat Bhushan, Project Engineer, National Council for Cement and Building Materials (NCB), Ballabgarh, India, present their findings in an article that delves into the methodology used to tackle the identified issue and discusses the R&D project taken up by NCB that resulted in the creation of an innovative design capable of effectively managing diverse alternative fuels and their combinations.

At COP26, India made a significant commitment by pledging to embrace a low-carbon growth path and to shift half of its energy consumption away from fossil fuels and towards non-fossil alternatives by the close of this decade. Moreover, India has set the ambitious goal of achieving carbon neutrality by the year 2070. To achieve the target of carbon neutrality, alternative fuels (AFs), including biomass, refuse-derived fuel (RDF), used tires, plastic waste and hazardous waste, which have the potential to replace conventional fossil fuels such as coal, pet coke, etc. These AF are seen as promising solutions in line with India’s mission to reach carbon neutrality.
Nonetheless, with the adoption of these AF, challenges were encountered in handling of AF and their mix, encompassing environmental, product quality, logistical issues, health and safety concerns, as well as the intricacies of the processes and operations involved. However, one of the main challenges faced while handling AF used in cement plants is the jamming of the transfer chute.
Chute transfers are vital for material handling but can often become weak links in the chain. These components are used in conveying systems to transfer bulk materials between feeders, screens, and from one conveyor to another or for discharge into burners/pre-calciner. Chute design requires careful attention, as handling AFs with variations in material characteristics or operational requirements can lead to productivity losses and operational disruptions due to jamming or unpredictable chute behaviour.

Problem with chutes
A survey was conducted in the Indian cement industry in the year of 2019-20 to assess the issues related with handling of AFs and their mix. Out of 100 questionnaires distributed, 61 responses were received, providing valuable insights. The survey highlighted that 78.7 per cent of respondents faced transfer chute issues when handling AFs, primarily jamming. The main reasons included using conventional chute designs unsuitable for heterogeneous AFs,
lack of knowledge about material flow and properties, and the unexpected introduction of new materials not considered during chute design. These issues led to significant maintenance efforts and operational disruptions.
One significant cause of chute jamming is the reliance on traditional chute design methods, which have been widely employed in the Indian cement industry for handling uniform materials like limestone, coal, bauxite, and iron ore. These methods fall short when dealing with heterogeneous AFs due to the varying properties of these materials throughout the year, depending on their source, mix content, and other factors. Additionally, a lack of understanding of material flow and physical properties, such as shape, size, angle of repose and angle of inclination, contributes to chute issues.
Another key factor identified in the survey is the unexpected introduction of new materials that were not considered during chute design. Anticipating all potential AF types during design is challenging because cement plants select materials based on factors like cost, suitability for their raw mix, fossil fuel prices, and availability. Therefore, it was challenge to design a transfer chute which can handle various AF and their mix without any jamming issues.

Solution
Based on the survey result, NCB took the problem related to jamming of transfer chute while utilising AFs and their mix in Indian Cement Industry as an R&D project. The project commenced with the site visit of cement plants, discussion with plant personnel and determination of material properties, providing essential foundational data. Utilising this data, key input parameters were carefully selected to run the Discrete Element Modelling (DEM) simulations.
To ensure the DEM model’s accuracy, it underwent calibration through the development of CAD calibration models. These models aligned the DEM model with real-world conditions. Following calibration, the existing transfer chute design was simulated using DEM. Accordingly, 14 simulations of AFs were conducted using the DEM, and the subsequent outcomes were thoroughly examined to pinpoint significant concerns associated with the traditional chute design. This analysis served as the basis for developing an improved transfer
chute model. The enhanced design was subsequently subjected to DEM simulation to assess its
performance. The various designs were evaluated and necessary modifications were made to address any identified issues to improve the performance of the transfer chute.

Fig 1: Simulation Results for Industrial Waste
Additionally, adjustments to the DEM parameters were carried out to fine-tune the model’s accuracy. The ultimate goal of this comprehensive process was to arrive at the final design of a transfer chute suitable for handling AF and their mix without jamming. The final parameters obtained after fine tuning and making adjustment to the chute design in simulation are as follows:
• Chute Valley Angle: 70°
• Chute Width (Minimum): 4.3 to 4.5 times the lump size
• Chute Hood Height at the material entrance: Minimum 0.6 times the Belt Width
• Cross-sectional area of transfer chute: Minimum 10 to 11 times of cross-sectional area of the material stream inside the chute.
• Selected Liners: UHMWPE
Based on the above parameters obtained after simulation, an experimental setup comprising four transfer chutes and belt conveyors was established on NCB’s Ballabgarh premises to conduct experimental study on the different samples of AF collected from different cement plants and sites. Thereafter, 19 AF and their mix were collected from different cement plants across India. The materials were experimented on different mass flow rates of 3, 5, 8, 10 and 15 tph and with moisture content levels spanning from 0.18 to 45 per cent. Remarkably, even after a total of 261 hours of operation on the experimental setup, no instances of jamming were observed in the transfer chute.
Even when faced with a jamming scenario, the innovative flexible arrangement introduced in the transfer chute design (patent filed by NCB) proven to be highly effective at swiftly addressing blockages caused by solid AF. It helps in clearing these blockages in just six minutes, representing a significant improvement compared to the conventional method, which typically necessitates a lengthy 85 to 105 minutes to remove and resume operations. This innovative approach optimises the chute cleaning process, ensuring uninterrupted operations.
Figures 2, 3 and 4 shows the general arrangement of the of the experimental setup and glimpses of experiments:

Conclusion
In the cement industry, conventional transfer chute designs have posed challenges when handling a range of diverse alternative fuels. To address this issue, a new transfer chute design capable of handling various AFs and their mixtures has been developed by the NCB. This innovative design can handle various AFs and their mixes and also significantly reduces chute jamming and cleaning time to 6-8 minutes. The NCB led the development of this versatile transfer chute design, which promises to enhance material handling in cement plants. The project’s outcomes led by NCB are valuable for system design improvements and process optimisation, streamlining cement plant operations.

ABOUT THE AUTHOR:
Dr Kapil Kukreja, Group Manager (CME), NCB
has over 19 years of work experience in the field of System Design, Project Engineering and Management. He has previously worked with organisations like ACC, Holtec Consulting, JK White Cement etc.

Bharat Bhushan, Project Engineer (CME), NCB has a one-year experience as Project Engineer in the field of System Design, Project Engineering & Management.

Dr Dhirendra Kumar Panda, Joint Director, NCB has over 36 years of experience in the areas of Geology, Raw Materials and Mining and administrative experience as a Team Leader, Programme Leader and Head of the Centre.

Concrete

Nuvoco Vistas Reports Record Q2 EBITDA, Expands Capacity to 35 MTPA

Cement Major Nuvoco Posts Rs 3.71 bn EBITDA in Q2 FY26

Published

on

By

Shares



Nuvoco Vistas Corp. Ltd., one of India’s leading building materials companies, has reported its highest-ever second-quarter consolidated EBITDA of Rs 3.71 billion for Q2 FY26, reflecting an 8% year-on-year revenue growth to Rs 24.58 billion. Cement sales volume stood at 4.3 MMT during the quarter, driven by robust demand and a rising share of premium products, which reached an all-time high of 44%.

The company continued its deleveraging journey, reducing like-to-like net debt by Rs 10.09 billion year-on-year to Rs 34.92 billion. Commenting on the performance, Jayakumar Krishnaswamy, Managing Director, said, “Despite macro headwinds, disciplined execution and focus on premiumisation helped us achieve record performance. We remain confident in our structural growth trajectory.”

Nuvoco’s capacity expansion plans remain on track, with refurbishment of the Vadraj Cement facility progressing towards operationalisation by Q3 FY27. In addition, the company’s 4 MTPA phased expansion in eastern India, expected between December 2025 and March 2027, will raise its total cement capacity to 35 MTPA by FY27.

Reinforcing its sustainability credentials, Nuvoco continues to lead the sector with one of the lowest carbon emission intensities at 453.8 kg CO? per tonne of cementitious material.

Continue Reading

Concrete

Jindal Stainless to Invest $150 Mn in Odisha Metal Recovery Plant

New Jajpur facility to double metal recovery capacity and cut emissions

Published

on

By

Shares



Jindal Stainless Limited has announced an investment of $150 million to build and operate a new wet milling plant in Jajpur, Odisha, aimed at doubling its capacity to recover metal from industrial waste. The project is being developed in partnership with Harsco Environmental under a 15-year agreement.

The facility will enable the recovery of valuable metals from slag and other waste materials, significantly improving resource efficiency and reducing environmental impact. The initiative aligns with Jindal Stainless’s sustainability roadmap, which focuses on circular economy practices and low-carbon operations.

In financial year 2025, the company reduced its carbon footprint by about 14 per cent through key decarbonisation initiatives, including commissioning India’s first green hydrogen plant for stainless steel production and setting up the country’s largest captive solar energy plant within a single industrial campus in Odisha.

Shares of Jindal Stainless rose 1.8 per cent to Rs 789.4 per share following the announcement, extending a 5 per cent gain over the past month.

Continue Reading

Concrete

Vedanta gets CCI Approval for Rs 17,000 MnJaiprakash buyout

Acquisition marks Vedanta’s expansion into cement, real estate, and infra

Published

on

By

Shares



Vedanta Limited has received approval from the Competition Commission of India (CCI) to acquire Jaiprakash Associates Limited (JAL) for approximately Rs 17,000 million under the Insolvency and Bankruptcy Code (IBC) process. The move marks Vedanta’s strategic expansion beyond its core mining and metals portfolio into cement, real estate, and infrastructure sectors.

Once the flagship of the Jaypee Group, JAL has faced severe financial distress with creditors’ claims exceeding Rs 59,000 million. Vedanta emerged as the preferred bidder in a competitive auction, outbidding the Adani Group with an overall offer of Rs 17,000 million, equivalent to Rs 12,505 million in net present value terms. The payment structure involves an upfront settlement of around Rs 3,800 million, followed by annual instalments of Rs 2,500–3,000 million over five years.

The National Asset Reconstruction Company Limited (NARCL), which acquired the group’s stressed loans from a State Bank of India-led consortium, now leads the creditor committee. Lenders are expected to take a haircut of around 71 per cent based on Vedanta’s offer. Despite approvals for other bidders, Vedanta’s proposal stood out as the most viable resolution plan, paving the way for the company’s diversification into new business verticals.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds