Connect with us

Concrete

Impact of PCC on Reduction of Carbon Footprint

Published

on

Shares

Dr Bibekananda Mohapatra, Director General, National Council for Cement and Building Materials (NCB), shares insights from the extensive research for development of low carbon cements such as Portland Composite Cement (PCC).

India has updated its Nationally Determined Contribution (NDC) submitted to the United Nations Framework Convention on Climate Change (UNFCCC) based on the commitment of the Honourable Prime Minister at the 26th session of the Conference of the Parties (COP26) held in Glasgow, in November 2021. India presented to the world five nectar elements (Panchamrit) of India’s climate action into enhanced climate targets. The new climate action targets ‘Panchamrit’ by India included:

  • Net Zero target for India by the year 2070;
  • Achieving carbon intensity reduction of 45 per cent over 2005 levels by 2030; reducing 1 billion tonnes of projected emissions from now till 2030;
  • Installing non-fossil fuel electricity capacity of 500 GW by 2030; and
    Sourcing 50 per cent of energy requirements from renewables by 2030.

Recently, the Intergovernmental Panel on Climate Change (IPCC) published a report on global warming. The report highlighted that limiting the increase in global temperature to 1.5°C requires achieving net zero carbon dioxide emissions globally in the early 2050s. As per IPCC report, major transitions in the energy and industrial sector will be required to limit global warming such as:

  • substantial reduction in fossil fuel use
  • widespread electrification
  • improved energy efficiency
  • use of alternative fuels (such as hydrogen)
  • using materials more efficiently
  • reusing and recycling products
  • minimising waste

Globally, the cement sector generates about 7 per cent of the total anthropogenic emissions. In India, the energy consumption and process emissions from cement industry contributes about 4.2 per cent and 2.1 per cent of the total Greenhouse Gas (GHG) emissions of 2531.1 million tonnes CO2 equivalent in 2016 (Source: Third biennial update report of India to UNFCCC). Therefore, the cement sector in India has an important role to play to achieve the enhanced climate targets.

The low carbon roadmap has identified clinker substitution and Carbon Capture and Utilisation as having the highest potential for reduction in carbon footprint


In hard-to-abate sectors such as cement, it is technologically very difficult to reduce the process related CO2 emissions. The sources of CO2 emissions in cement manufacture are categorised as direct sources, which includes calcination (55-60 per cent), combustion (25-30 per cent) and indirect sources of CO2 including electricity (8-10 per cent) and transportation (2-5 per cent) as shown in Fig 1. The Indian cement industry has been working on the issue of its GHG emissions and has brought down the CO2 emission factor from 1.12 t of CO2/t of cement in 1996 to 0.670 t of CO2/t of cement in 2017.


The global cement industry and cement associations worldwide have prepared roadmaps to achieve Net Zero Concrete to meet the sector commitments for reduction of GHG emissions in line with their respective national commitments at COP 26. Last year, Global Cement and Concrete Association (GCCA), CEMBUREAU and Portland Cement Association (PCA) announced roadmaps to achieve Carbon Neutrality across the cement and concrete value chain by 2050 with the highest contribution from carbon capture and utilisation.
The journey towards decarbonisation of Indian cement industry started in 2012 with preparation of a Low Carbon Technology Roadmap specifically for the Indian cement industry, when International Energy Agency (IEA) and Cement Sustainability Initiative (CSI), in collaboration with the Confederation of Indian Industry (CII) and the National Council for Cement and Building Materials (NCB) prepared this document.

The identified levers in the low carbon technology roadmap of the Indian cement industry are:
i. Substitution of clinker
ii. Alternative fuel and raw materials
iii. Improving energy efficiency
iv. Installation of Waste Heat Recovery (WHS)
v. Newer technologies like renewable energy, novel cements, carbon capture and storage/utilisation.
The first four levers have already been implemented by the Indian cement industry and the impact has already been reflected in the reduction of CO2 emission factor from cement industry. The specific direct CO2 emissions of major cement companies in the year 2021-22 is given in Table 1 below:


The low carbon roadmap identified clinker substitution and Carbon Capture and Utilisation as having the highest potential for reduction in carbon footprint of the Indian Cement Industry as shown in Fig. 2. India is blessed to have supplementary cementitious materials like fly ash and blast furnace slag. In 2021-22, 270.8 million tonnes of fly ash and about 12 million tonnes of blast furnace slag were generated in our country. Apart from annual generation, 1,700 million tonnes of legacy fly ash lie at various thermal power plants in our country.


The Indian Cement Industry is quite proactive and has taken several steps to mitigate greenhouse gas emissions systematically following the low carbon technology roadmap. This reduction in the carbon footprint of the cement industry could have been achieved due to production of low carbon blended cements like Portland Pozzolana Cement (PPC) and Portland Slag Cement (PSC).


The production of blended cements like PPC and PSC has seen constant increase since the year 1995 when only 30 per cent blended cements were produced in India as compared to 2017, when the production of blended cements has increased to 73 per cent as shown in Fig 3. This could have been achieved due to acceptance of blended cements in Indian markets by the awareness efforts of cement companies and research organisations like NCB.
Keeping in line with the current global scenario, NCB in its endeavour to help the cement industry realise the target of net zero carbon by 2070 has been working on various levers of CO2 reduction especially clinker substitution.
Accordingly, NCB has undertaken extensive research for development of low carbon
cements like:

  • Portland Composite Cement based on fly ash and limestone
  • Composite cement based on fly ash and slag
  • Portland Limestone Cement
  • Geopolymer cement
  • Multi component blended cement
  • Portland dolomite Cement

The impact of low carbon cements like PCC based on fly ash and limestone on carbon footprint of Indian Cement Industry is discussed below:

PCC based on Fly Ash and Limestone
The blended cements, which are produced using more than one mineral addition, are known as composite cements. Fly ash conforming to IS 3812 (Part 1): 2003 and granulated blast furnace slag conforming to IS 12089: 1987 are used in the manufacture of composite cements (16415-2015) with 15-35 per cent and 20-50 per cent respectively. Presently there is almost complete utilisation of granulated blast furnace slag in India. However, utilisation of fly ash in manufacture of PPC is still only 25 per cent out of around 270 million tonnes generated annually. Additionally, India has large reserves of low grade, dolomitic and siliceous limestones, manufacture of limestone and fly ash based composite cements will reduce the impact of CO2 on environment, utilisation of industrial wastes and enable production of cements with lower clinker factor leading to resource conservation, enhanced waste utilisation and greater sustainability in cement manufacture. In this study, PCC blends were prepared (140 nos) with four types of clinker from different regions of India along with the regional available fly ash (15-35 per cent) and limestone (5, 7 and 10 per cent). The results depicted that the clinker quality plays an important role on performance of limestone and fly ash based composite cements. NCB studies indicated PCC based on limestone and fly ash with 35 per cent replacement of clinker by fly ash and limestone (keeping limestone content up to 7 per cent in it). NCB has submitted the report to Bureau of Indian Standards (BIS) for standard formulation and it is under consideration of BIS.

Comparison of CO2 Emissions
The specific CO2 emissions associated with various types of cements like OPC, PPC, PSC, composite cement based on fly ash and slag, PCC and PLC are calculated considering the typical composition of cements as given in Table 2. The composition of PCC is taken as 60 per cent clinker, 28 per cent fly ash, 7 per cent limestone and 5 per cent gypsum whereas the composition of PLC is taken as 80 per cent clinker, 15 per cent limestone and 5 per cent gypsum as shown in Table 2.


For calculating the specific CO2 emissions of each type of cement, the contribution of CO2 from calcination, fuel combustion and electricity have been taken into consideration. The comparison of the specific CO2 emission for various cements is shown in Fig 4. The CO2 intensity of OPC is 842 kg CO2 per tonne, whereas it is 536 kg CO2 per tonne for PCC, and 703 kg CO2 per tonne for PLC. The major contributors for CO2 intensity reduction of low carbon cements as compared to OPC are the varying clinker content and the different grinding energy requirement for the cements. The grinding energy required for PCC and PLC is considered lower as compared to PPC as limestone acts as a grinding agent.

As shown in Fig 4, the specific CO2 emissions from PCC production are equivalent to PPC. The availability of fly ash will gradually reduce due to the focus of the Government of India on renewable energy generation and utilisation of alternative fuels in thermal power plants. In this scenario, PCC will emerge as a viable alternate option to PPC, with utilisation of lower grade of limestone replacing portions of fly ash. As compared to specific CO2 emissions of 842 kg per tonne of OPC, the specific CO2 emissions associated with PCC are 536 kg CO2 per tonne i.e., about 36 per cent lower. Thus, the replacement of OPC by low carbon cements like PCC will result in a lower carbon footprint of the Indian cement industry.


Presently, 27 per cent OPC is produced, out of the total cement mix produced in India. Table 3 showcases different scenarios of CO2 reduction due to gradual replacement of OPC at varying per cent by PCC ranging from 1 per cent to 50 per cent as shown in Table 3. PCC has a potential to reduce CO2 emissions up to 61.1 million tonnes in the next 10 years by 2030, if 50 per cent OPC may be replaced by PCC after standard formulation by BIS.

ABOUT THE AUTHOR:
Dr. BN Mohapatra is the Director General of National Council for Cement and Building Materials (NCCBM).
He is a Phd in Cement Mineral Chemistry, enriched with 13 years of research and development and over 22 years of industry experience with a strong academic relations with premier institutes. He is the chairman of the Cement Sectoral Committee of the Bureau of Energy Efficiency (BEE).

Concrete

Adani’s Strategic Emergence in India’s Cement Landscape

Published

on

By

Shares



Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.

India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.

Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:

  • September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
  • December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
  • August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
  • April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
  • Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
  • Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
  • Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
  • Orient Cement: It would serve as a principal manufacturing facility following the merger.

Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:

  • By FY 2026: Reach 118 MTPA
  • By FY 2028: Target 140 MTPA

These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).

Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.

Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.

Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.

Challenges potentially include:

  • Integration challenges across systems, corporate cultures, and plant operations
  • Regulatory sanctions for pending mergers and new capacity additions
  • Environmental clearances in environmentally sensitive areas and debt management with input price volatility

When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.

Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.

About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.

Continue Reading

Concrete

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Published

on

By

Shares



PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.

Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Continue Reading

Concrete

Driving Measurable Gains

Published

on

By

Shares



Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.

Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.

Beyond energy efficiency, the retrofit significantly improved operational parameters:

  • Lower thermal stress on equipment
  • Extended lubricant drain intervals
  • Reduction in CO2 emissions and operational costs

These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.

Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:

  • Enhanced component protection
  • Extended oil life under high loads
  • Stable performance across fluctuating temperatures

By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.

Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.

A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Continue Reading

Trending News