Technology
Mechanical Activation of Fly Ash
Published
8 years agoon
By
adminMany scientists and environmentalists have been attracted towards fly ash, though it is not an attractive material. Dr Ajit Kumar Bhonsle, who has long been associated with the construction industry, narrates his experience on improving the performance of fly ash by mechanical means.
Fly ash is a finely divided residue, resulting from the combustion of ground or powdered bituminous coal or sub-bituminous coal (lignite) and is transported by the flue gases of boilers fired by pulverised coal or lignite. It comprises spherical particles, mostly amorphous, in addition to unburnt carbon, crystalline mullite, quartz and hematite. It has cementitious properties which exhibit when mixed with hydrated lime and alkalis. The mineralogical and chemical composition of n??y ash depends on the source of the coal and design engineering of fly ash collection at the power stations.
Fly ash is a very fine powder and tends to travel far in the air. When not properly disposed, it is known to pollute air and water, and causes respiratory problems when inhaled. When it settles on leaves and crops in fields around the power plant, it lowers the yield. The conventional method used to dispose of both fly ash and bottom ash is to convert them into slurry for impounding in ash ponds around the thermal plants. The construction of ash ponds requires vast tracts of land. This depletes land available for agriculture over a period of time. When one ash pond fills up, another has to be built, at high cost and with further loss of agricultural land. Huge quantity of water is required to convert ash into slurry. During rains, numerous salts and metallic content in the slurry can leach down to the groundwater and contaminate it. Of late (early 1970s), due to development of technology, collection of dry fly ash has started.
Fly ash generation in India
- 75 per cent of installed power generation in India – coal-based
- 200 million MT of fly ash is generated every year
- 300-500 million MT coal used every year
- Ash generation likely to reach 300+ million MT by 2017-18
- Average ash contents up to 35 per cent in Indian coal
- Presently as per the figures from the Ministry of Environment & Forest, only 25-35 per cent of ash is being used in fillings, embank-?ments, construction/cement industry, block and tiles, etc.
Several factors have impeded fly ash utilisation in India, while it is being extensively used globally. Coal-based thermal power stations have been operational for more than 50 years, but the concept of developing environment-friendly solutions for fly ash utilisation is only about 15 years old. Overall, fly ash utilisation in India stands at a fairly low level of about 25-35 per cent of the quantity generated. Various possibilities for increasing its use are under research and development (R&D). Among numerous factors that account for the low level of utilisation, the major factors are:
- Poor understanding of the chemistry of fly ash and its derivatives for proper end applications
- Absence of standards and specifications for fly ash products
- Lack of reliable quality assurance for fly ash products
- Poor public awareness about the products and their performance
- Availability of dry fly ash collection facilities is far off from consumption places.
- Easy availability of land with top soil at cheap rates for manufacturing conventional bricks
- Lack of proper coordination between thermal plants and ash users.
Mechanical activation of fly ash, an efforts to increase utilisation of fly ash The need of hour is to increase utilisation of fly ash through R&D activities. One such major activity that is being tried is mechanical activation of fly ash, a process that comprises exposing the particles to high energy impacts in order break or crack the particle microstructure to increase the surface area and reactivity of each particle. It is a process not only for achieving finer fly ash (up to 6,000-8,000 Blains), but also help conversion of fly ash particles from spherical shape to crystalline shape, thereby making available larger surface area for pozzolanic reaction. With mechanical activation, even the coarse fly ash and pond fly ash can be converted to finer reactive fly ash. Refer to Table 1 and 2. This would not only double the lime reactivity of normal fly ash, but would also result in giving packing effect to its final product, there by giving the final product increased density and better strength in shorter time (J Temuujin, R P Williams, A Van Riessen).
Low fly ash utilisation – technical facts
In addition to factors discussed above, there are some technical factors also, which hinder the optimum utilisation of fly ash. The prime factors are:
Coarseness: Despite having cementitiouss and pozzolanic properties, consumption of available fly ash has limitation due to its coarseness. Coarse fly ash gives a low compressive strength when used up to 30 per cent of cement replacement.
Spherical shape: Further, the large particle sizes carry the spherical form, which is inactive to pozzolanic reaction.
Inconsistency in particle size distribution (large variation in particle size in coarse fly ash), lower fineness and spherical shape result in limited availability of surface for reactivity.
Spherical particles also contribute to lower density of the mass.
Thus, lower density hinders the development of strength at early stage.
So, how mechanical activation would overcome these limitations: As discussed above, the mechanical activation is a method of obtaining very fine fly ash (up to or +8,000 Blaine). In addition, it also destroys the spherical morphology of raw fly ash and converts fly ash particles from spherical shape to crystalline shape.
Fineness and conversion result in larger surface area availability for lime reactivity, which is vital to any material having cementitious and pozzolanic properties.
Smaller particles fill voids between larger particles, thereby giving the final product increased density and strength.
Crystalline form of the particles itself leaves no room for voids as in the case of spherical particles. This results in reduction of water consumption, which otherwise gets accumulated in the voids.
Lab tests have shown increase in lime reactivity
Improved durability of concrete, even with 50 per cent replacement of OPC
Increase in tensile strength of cement product
Reduction in water consumption
Difference between superfine fly ash (SFAF) and normal fly ash: Finer particle size of SFAF and change in its morphology allow higher dissolution rate of SFAF. Thus, Geo polymer paste made with SFAF when cured at ambient temperature leads to an increase of about 80 per cent in compressive strength when compared with Geo polymer made from normal fly ash.
Some facts
Beside environmental issues discussed above, one of the major elements, which cause global warming, is emission of carbon dioxide (CO2). It is observed that production of one tonne of Portland cement releases an equal amount of CO2 into atmosphere, thus utilisation of fly ash in cement will help to contain CO2 emission. Therefore, use of fly ash will increase the cement production which in turn will slow down the rate of depletion of available natural resources.
An estimate says replacing 15 per cent cement worldwide by fly ash will reduce CO2 emission by 227 million tonne.
The target is replacing 50 per cent of cement worldwide by fly ash will reduce CO2 by 750 million tonne. Refer to Table 3. This may be equal to removing 25 per cent of all automobiles in the world.
Full utilisation of generated fly ash in India will provide employment potential for more than 3,00,000 people. This will generate a business volume of over Rs 4,000 crore.
Materials
I shall now give my experiences on improving the performance of fly ash through mechanical ways. Fly ash used for study purpose is procured from the Gandhinagar Thermal Power Station in Gujarat and Parli Thermal Power Station at Parli Vaijnath in Beed district of Maharashtra. Around 80 tonnes of samples is collected for study assessment.
Method
After mechanical activation, both the samples were analysed for the particle sizes, fineness (blains air permeability) and lime reactivity. The analysis was conducted at National Council for Cement and Building Materials (NCCBM) at Ahmedabad, Gujarat. Standard method of testing were done as per IS 3812- Part 1 and 2 (2003) as Specification for Pulverised Fuel Ash, Part 1: for use as pozzolanic additive in cement, cement mortar and concrete [CED 2: Cement and Concrete] and specification for pulverised fuel ash, Part 2: for use as admixture in cement mortar and concrete [CED 2: Cement and Concrete] and IS 1727 (1967) for methods of test for pozzolanic materials [CED 2: Civil Engineering].
Test results of parameter for fineness, lime reactivity and compressive strength are mentioned in the tables Refer to Table 1 and 2.
Conclusion
Fly Ash is a wonderful material, however need of the hour is to explore its properties scientifically and make use of the same in various spheres.
Mechanically activated fly ash has vast potential to improve upon the utilization of fly ash in no. of fields viz cement, concrete, cement products like paver blocks bricks.
Mechanically activated fine fly ash can also be used in paint industry, cement roof sheeting industry
Consistent quality of activated fly ash can be a good substitute for concrete/cement strength enhancing material viz micro silica alcofine etc.
Activation facility if set up near thermal power plant it would generate employment opportunity to the local labour force.
Activation of fly ash may a good tool to combat the problem of Fly Ash disposal which is likely to increase in the days to come.
Up to 110 per cent of strength activity index can be achieved when normal fly ash is ground to smaller size.
Strength activity index of normal fly ash can be improved by grinding and coarse fly ash is not in crystalline phase.
For a good quality of micro fine fly ash, by classifying or grinding, the important factor is its fineness. Fly ash with finer particle size increases ultimate strength as well as rate of strength gain of fly ash cement mortar.
When keeping the same work-?ability of mortal, the use of finer fly ash demands less water than the use of normal coarse one.
Excerpt from the former President, APJ Abdul Kalam?s address to the nation on the eve of the country?s 56th Republic Day
Conversion of fly ash into wealth generator: Fly ash can become a wealth generator by making use of it for producing ?green building? materials, roads, agriculture etc.
Full utilisation of the generating stock will provide employment potential for three hundred thousand people and result in a business volume of over Rs 4,000 crore.?(ENVIS newsletter vol. 2, no.6 Jan 2007)
The author is an expert with over 35 years of experience working in cement, concrete and allied fields.
By integrating advanced technologies like IoT and AI, cement plants are transforming into highly efficient and interconnected systems. ICR explores how these innovations enable real-time monitoring and predictive maintenance, significantly reducing downtime and operational costs.
The cement industry, traditionally known for its reliance on heavy machinery and manual processes, is undergoing a significant digital transformation. This shift is driven by advancements in technology that promise to enhance efficiency, reduce costs, and improve overall production quality. Key trends include the adoption of the Internet of Things (IoT), which enables real-time monitoring and control of production processes through interconnected devices. Artificial Intelligence (AI) and Machine Learning (ML) are being utilised to optimise operations, predict maintenance needs, and minimise downtime by analysing vast amounts of data. Additionally, the integration of Big Data analytics allows for more informed decision-making by providing insights into production trends and potential areas for improvement.
“One of the key advantages of integrating data across our systems is the ability to have a more transparent, agile, and integrated supply and logistics chain. With the implementation of Oracle Logistics Management Solution, we have been able to overcome challenges related to consignment locations and truck movements, providing real-time visibility into our operations. This has also led to operational efficiency improvements and the ability to predict consignment delivery times, which we share with our customers, enhancing their experience” says Arun Shukla, President and Director, JK Lakshmi Cement.
According to BlueWeave Consultancy, during the forecast period between 2023 and 2029, the size of India cement market is projected to grow at a CAGR of 9.05 per cent reaching a value of US$ 49.24 billion by 2029. Major growth drivers for the India cement market include the growing need from construction and infrastructure sectors and rising governmental initiatives and investments in expansive infrastructure ventures encompassing highways, railways, airports, and public edifices.
Importance of Digitalisation
Digitalisation in cement manufacturing is crucial for several reasons:
- Enhanced efficiency: Digital tools streamline production processes, reducing waste and improving the precision of operations. This leads to higher output and better resource utilisation.
- Predictive maintenance: By leveraging AI and IoT, cement plants can predict equipment failures before they occur, minimising unplanned downtime and extending the lifespan of machinery.
- Energy optimisation: Digital technologies enable the monitoring and optimisation of energy consumption, leading to significant cost savings and a reduced carbon footprint.
This aligns with global sustainability goals and regulatory requirements.
Quality control: Advanced sensors and data analytics ensure consistent product quality by closely monitoring and adjusting the production parameters in real time.
Safety improvements: Automation and robotics reduce the need for human intervention in hazardous environments, enhancing worker safety and reducing the risk of accidents.
Competitive advantage: Companies that embrace digitalisation can respond more quickly to market changes, innovate faster, and provide better customer service, giving them a competitive edge in the industry.
Digital transformation is reshaping the cement industry by driving efficiency, enhancing product quality, and promoting sustainability. As the industry continues to evolve, the adoption of digital technologies will be essential for maintaining competitiveness and achieving long-term success.
Key technologies driving digitalisation
The digital transformation of the cement industry is powered by a suite of advanced technologies that enhance efficiency, improve product quality, and drive sustainability. Here are some of the key technologies making a significant impact:
IoT refers to a network of interconnected devices that communicate and exchange data in real time. In the cement industry, IoT applications are revolutionising operations by enabling real-time monitoring and control of production processes. Sensors embedded in equipment collect data on various parameters such as temperature, pressure, and vibration. This data is then transmitted to a central system where it is analysed to optimise performance. For instance, IoT-enabled predictive maintenance systems can detect anomalies and predict equipment failures before they occur, minimising downtime and reducing maintenance costs. Additionally, IoT helps in energy management by monitoring consumption patterns and identifying opportunities for energy savings.
AI and ML in process optimisation are pivotal in enhancing process optimisation in the cement industry. AI algorithms analyse vast amounts of data generated from production processes to identify patterns and insights that human operators might overlook. ML models continuously learn from this data, improving their accuracy and effectiveness over time. These technologies enable real-time adjustments to production parameters, ensuring optimal performance and product quality. For example, AI-driven systems can automatically adjust the
mix of raw materials to produce cement with consistent properties, reducing waste and improving efficiency. AI and ML also play a crucial role in predictive maintenance, forecasting potential issues based on historical data and preventing costly equipment failures.
Tushar Kulkarni, Head – Solutions, Innomotics India, says, “Adoption of artificial intelligence (AI) will significantly help cement plants in their efforts towards innovation, efficiency and sustainability goals through improved process optimisation and increased productivity.”
“The Innomotics Digi-Suite (AI-based) is positioned to support the cement industry in this endeavour. Built on microservices architecture, Digi-Suite offers flexible self-learning AI based solutions which can be customised or tailor-made in accordance with plant / customer requirements. It enables customers to implement their digitalisation strategies in a stepwise manner and scale it up to an entire plant or multiple plants. Through this platform, customers can monitor and manage processes centrally. This approach provides guidance for company-wide process standardisation, knowledge sharing and optimum utilisation of expert resources,” he adds.
Big Data analytics involves processing and analysing large volumes of data to extract meaningful insights. In the cement industry, Big Data analytics is used for predictive maintenance and strategic decision-making. By analysing data from various sources such as sensors, machinery logs, and production records, companies can predict equipment failures and schedule maintenance activities proactively. This approach minimises unplanned downtime and extends the lifespan of critical assets. Furthermore, Big Data analytics helps in optimising supply chain management, inventory control, and production planning by providing actionable insights into trends and patterns. Decision-makers can leverage these insights to make informed choices that enhance operational efficiency and competitiveness.
Arun Attri, Chief Information Officer, Wonder Cement, says, “The advantages of data integration are substantial. By leveraging integrated data,
we build a single source of truth, we can identify patterns, optimise processes, and implement strategic initiatives that drive overall business growth. This approach not only enhances operational efficiency but also strengthens our relationships with all stakeholders by providing a clear and consistent view of our operations.”
“By establishing a single source of truth, we ensure that all stakeholders, both internal and external, have access to consistent and accurate data. This unified data repository enhances visibility into our operations, improves decision-making, and enables comprehensive analyses. For internal stakeholders, such as our production, quality and maintenance teams, this means having reliable data to optimise processes and schedule maintenance effectively. For external stakeholders, including suppliers and customers, it ensures transparency and trust, as they can rely on the accuracy of the information provided,” he adds.
Cloud computing offers a scalable and flexible solution for data storage and access, playing a vital role in the digitalisation of the cement industry. By storing data in the cloud, companies can easily access and share information across different locations and departments. Cloud-based platforms facilitate real-time collaboration and data sharing, enabling seamless integration of various digital tools and systems. Additionally, cloud computing provides robust data security and backup solutions, ensuring that critical information is protected and can be recovered in case of data loss. The scalability of cloud services allows cement manufacturers to handle the increasing volume of data generated by IoT devices and other digital technologies, supporting their growth and innovation initiatives.
Digital twin technology
Digital twin technology involves creating a virtual replica of a physical asset, process, or system. This digital counterpart is continuously updated with real-time data from sensors and other sources, mirroring the physical entity’s performance, behaviour and condition. In the cement industry, digital twins
offer numerous benefits. They enable real-time monitoring and analysis, allowing operators to visualise and understand complex processes in detail. This enhanced visibility helps in optimising production, improving efficiency, and reducing downtime. Digital twins also facilitate predictive maintenance by simulating various scenarios and identifying potential issues before they occur, thereby extending the lifespan of equipment and minimising maintenance costs. Moreover, they support data-driven decision-making by providing comprehensive insights into operations, leading to better resource management and increased productivity.
Tarun Mishra, Founder and CEO, Covacsis, explains, “Different plant data reside within the walls of individual plants. Comparing micro economic performance across plants is impossible. Covacsis’ IPF is designed to aggregate multiple plant’s data at unified enterprise datalike (historian) which then further used for relative baselining and relative performance analysis across same and similar asset base or product or processes.”
“Data plays the most important role in any algorithm. Big data and fast data are only adding to the logistics performance of any algorithm and platform. Covacsis is a decade old and most mature platform in the world. Covacsis’ SaaS infrastructure is already handling more than 350 billion of cement process and operation data on a daily basis with a compounding daily growth rate of 1 per cent. This provides a significant advantage to Covacsis towards building algorithms and ensuring the value efficacy of these algorithms for the industry,” he elaborates.
The implementation of digital twins in cement plants involves several steps. First, detailed models of the plant’s equipment, processes, and systems are created using data from various sources such as sensors, historical records, and engineering specifications. These models are then integrated into a digital platform that continuously collects and analyses real-time data from the physical plant. For instance, a digital twin of a cement kiln can monitor temperature, pressure, and other critical parameters, allowing operators to optimise the combustion process and improve energy efficiency.
Similarly, digital twins of grinding mills can help in adjusting operational parameters to achieve optimal particle size distribution and improve cement quality. The integration of digital twins with other digital technologies such as IoT, AI and Big Data analytics enhances their capabilities, providing a comprehensive and dynamic view of the entire production process. As a result, cement plants can achieve significant improvements in operational efficiency, product quality and sustainability.
Automation in cement production
Automation plays a pivotal role in enhancing productivity within the cement industry by streamlining operations and reducing the reliance on manual labor. Automated systems and machinery can perform repetitive and complex tasks with higher precision and consistency than human workers. This leads to significant improvements in operational efficiency and throughput. For instance, automated material handling systems can manage the movement and storage of raw materials and finished products more effectively, minimising delays and reducing handling costs.
Automated process control systems enable real-time monitoring and adjustments of production parameters, ensuring optimal performance and reducing waste. Additionally, automation helps in maintaining consistent product quality by minimising human errors and variations in the manufacturing process. Overall, the integration of automation technologies results in faster production cycles, lower operational costs, and increased competitiveness in the market.
The introduction of automation in the cement industry has a profound impact on workforce skills and safety. As automation takes over routine and hazardous tasks, the demand for manual labour decreases, and the focus shifts to more technical and supervisory roles. Workers are required to develop new skills in operating and maintaining automated systems, as well as in data analysis and problem-solving. This shift necessitates continuous training and upskilling to ensure the workforce can effectively manage and leverage advanced technologies.
On the safety front, automation significantly enhances worker safety by reducing their exposure to dangerous environments and tasks. Automated systems can handle heavy lifting, high-temperature processes, and exposure to harmful dust and chemicals, thereby minimising the risk of accidents and occupational health issues. As a result, automation not only boosts productivity but also contributes to a safer and more skilled workforce, fostering a more sustainable and resilient industry.
Energy efficiency and sustainability
Digital tools are revolutionising the way energy consumption is monitored and optimised in the cement industry. Advanced sensors and IoT devices continuously collect data on energy usage across different stages of the manufacturing process. This real-time data is analysed using AI and machine learning algorithms to identify patterns, inefficiencies, and opportunities for energy savings. Energy management systems (EMS) integrate these digital tools to provide a comprehensive overview of energy consumption, allowing operators to make informed decisions to reduce energy waste. For instance, predictive analytics can forecast energy demands and optimise the operation of high-energy equipment, such as kilns and grinders, to align with periods of lower energy costs. Additionally, automated control systems can adjust operational parameters to maintain optimal energy efficiency, thereby reducing the overall energy footprint of the plant.
McKinsey & Company for the cement industry analyse that pursuing digitisation and sustainability levers are key to significantly boosting productivity and efficiency of a typical cement plant. The result is a margin gain of $4 to $9 per tonne of cement, which would shift a traditional plant to the top quartile of the cost curve for plants with similar technologies.
Digital technologies are also instrumental in driving sustainable practices within the cement industry. By providing precise control over production processes, digital tools help in minimising raw material wastage and reducing emissions. For example, advanced process control (APC) systems optimise the combustion process in kilns, leading to more efficient fuel use and lower carbon dioxide emissions. Digital twins, which create virtual replicas of physical assets, enable detailed simulations and scenario analyses, allowing companies to explore and implement more sustainable production methods. Furthermore, the integration of renewable energy sources,
such as solar and wind power, is facilitated by digital technologies that manage and balance energy loads effectively.
Digital platforms also support the implementation of circular economy practices, such as the use of alternative fuels and raw materials, by tracking and optimising their utilisation throughout the production cycle. Overall, digital technologies empower the cement industry to achieve significant advancements in energy efficiency and sustainability, contributing to environmental conservation and compliance with global sustainability standards.
Future of digitalisation
The cement industry is on the brink of a significant transformation driven by emerging technologies. Innovations such as artificial intelligence (AI), machine learning (ML), advanced robotics, and blockchain are poised to revolutionise various aspects of cement production and supply chain management. AI and ML will enable more sophisticated predictive maintenance and process optimisation, reducing downtime and increasing efficiency. Advanced robotics will automate more complex and hazardous tasks, further enhancing productivity and worker safety. Blockchain technology offers potential benefits in enhancing transparency and traceability in the supply chain, ensuring the integrity of product quality and compliance with environmental regulations. These emerging technologies will collectively contribute to a more efficient, reliable, and sustainable cement industry.
Smart cement plants represent the future of the industry, where digital technologies are fully integrated to create highly automated and interconnected production environments. In these plants, IoT devices, digital twins and AI-driven systems will work together seamlessly to monitor, control and optimise every aspect of the manufacturing process. Real-time data from sensors will feed into advanced analytics platforms, enabling instant adjustments to maintain optimal performance. Digital twins will allow operators to simulate and test changes in a virtual environment before implementing them in the physical plant, minimising risks and enhancing decision-making. Furthermore, smart cement plants will incorporate renewable energy sources and energy storage solutions, supported by intelligent energy management systems that ensure efficient and sustainable operations.
Over the next decade, the digital transformation of the cement industry is expected to accelerate, driven by continuous advancements in technology and increasing demands for sustainability. We can anticipate widespread adoption of AI and ML for real-time process optimisation and predictive maintenance, leading to significant reductions in operational costs and emissions. The use of digital twins will become standard practice, enabling more precise and flexible production planning and execution.
Enhanced connectivity and data sharing across the supply chain will improve efficiency, transparency, and collaboration among stakeholders. Additionally, the integration of renewable energy and advanced energy storage solutions will become more prevalent, supported by digital platforms that optimise energy usage and reduce environmental impact. As the industry embraces these digital innovations, we will see a new era of smart, sustainable, and highly efficient cement manufacturing, positioning it to meet the challenges and opportunities of the future.
Conclusion
The digital transformation of the cement industry is poised to revolutionise traditional manufacturing processes, driving significant advancements in efficiency, sustainability, and competitiveness. Emerging technologies such as IoT, AI, ML advanced robotics, and blockchain are not only optimising energy consumption and improving operational efficiency but are also paving the way for more sustainable practices. The evolution towards smart cement plants, where digital tools are fully integrated, is set to redefine production environments with enhanced automation, real-time monitoring and advanced analytics.
Over the next decade, we can expect these technologies to become standard practice, leading to substantial reductions in costs and emissions, improved supply chain transparency, and greater adoption of renewable energy sources. As the industry embraces digitalisation, it will be better equipped to meet future challenges and seize new opportunities, ultimately contributing to a more sustainable and resilient
global economy.
– Kanika Mathur
Concrete
Advantages of data integration are substantial
Published
4 months agoon
August 23, 2024By
RoshnaArun Attri, Chief Information Officer, Wonder Cement, discusses the digital transformation and advanced technologies used to enhance operational efficiency, sustainability and cybersecurity in their cement manufacturing processes.
How has the implementation of IT initiatives transformed your operations and processes in the cement industry?
We operate under the digital vision: To leverage digital to accelerate growth, build relationships and enhance consumer experience.
Our digital transformation initiatives have profoundly reshaped operations and processes at Wonder Cement. By integrating advanced technologies such as IoT, cloud computing and constructing a data lake house for data consolidation as a single source of truth, we have enabled seamless information flow between applications and developed real-time analytics. These advancements have streamlined our production processes, enhanced operational efficiency, and improved decision-making. Additionally, predictive analytics allows us to anticipate market trends and customer needs more accurately.
Can you discuss how your organisation is adopting Industry 4.0 technologies and the benefits you are experiencing?
Embracing Industry 4.0 technologies is truly transforming our operations and improving reliability. Here are the key benefits we are experiencing:
- Real-time monitoring: IoT devices provide real-time data on equipment performance, enabling predictive maintenance and reducing downtime.
- Process optimisation: AI and machine learning algorithms enhance process optimisation,
leading to increased efficiency and reduced operational costs. - Higher productivity: Improved monitoring and optimisation result in higher productivity and better product quality.
- Enhanced sustainability: Better resource utilisation contributes to enhanced sustainability.
What specific automation technologies have you implemented, and how have they improved efficiency and productivity in your cement plants?
Automation technologies have revolutionised efficiency and productivity at our cement plants. Automated quality control systems ensure consistent product quality by continuously monitoring and adjusting production parameters. Robotic process automation (RPA) in administrative functions like inventory management and order processing has drastically reduced manual errors and boosted operational efficiency. These advancements enable us to uphold high standards of precision and reliability, optimise resource utilisation and minimise wastage.
How are predictive analytics and maintenance technologies being utilised in your operations to minimise downtime and optimise maintenance schedules?
Predictive analytics and maintenance technologies are pivotal in minimising downtime and optimising maintenance schedules at Wonder Cement. By analysing historical data and real-time sensor inputs, we proactively predict and address potential equipment failures. This approach has drastically reduced unplanned downtime, enhanced equipment reliability, and extended machinery lifespan. Our maintenance teams use these insights to schedule activities during planned shutdowns, ensuring minimal production disruption. This proactive strategy has led to substantial cost savings and significantly boosted overall plant efficiency.
What are the challenges and advantages of integrating data across various systems in your cement manufacturing process?
Integrating data across various systems in our cement manufacturing process presents both challenges and advantages. One of the primary challenges is ensuring data consistency and accuracy across different platforms. To address this, we have implemented robust data integration and validation frameworks that facilitate seamless data flow and synchronisation.
The advantages of data integration are substantial. By leveraging integrated data, we build a single source of truth, we can identify patterns, optimise processes, and implement strategic initiatives that drive overall business growth. This approach not only enhances operational efficiency but also strengthens our relationships with all stakeholders by providing a clear and consistent view of our operations.
By establishing a single source of truth, we ensure that all stakeholders, both internal and external, have access to consistent and accurate data. This unified data repository enhances visibility into our operations, improves decision-making, and enables comprehensive analyses. For internal stakeholders, such as our production, quality and maintenance teams, this means having reliable data to optimise processes and schedule maintenance effectively. For external stakeholders, including suppliers and customers, it ensures transparency and trust, as they can rely on the accuracy of the information provided.
How is digitalisation contributing to sustainability efforts and reducing the environmental impact of your cement production?
IT initiatives play a pivotal role in supporting our sustainability efforts and reducing the environmental impact of cement production at Wonder Cement. One of the key contributions of IT is the optimisation of energy consumption. Through advanced energy management systems, we continuously monitor and analyse energy usage across our operations. This allows us to identify areas of inefficiency and implement measures to reduce energy consumption, such as adjusting process parameters and utilising energy-efficient equipment.
Additionally, IT enables us to track and manage emissions more effectively. By integrating emission monitoring systems with our IT infrastructure, we can continuously measure and analyse emission levels, ensuring compliance with environmental regulations and identifying opportunities for reduction. For instance, real-time data on CO2 emissions allows us to adjust our production processes to minimise the carbon footprint.
IT initiatives also facilitate the implementation of circular economy practices. Through sophisticated waste management systems, we can monitor and optimise the use of alternative fuels and raw materials, reducing our reliance on traditional resources and minimising waste generation.
With the increasing digitisation of operations, what steps are you taking to ensure cybersecurity and protect sensitive data?
With the increasing digitisation of operations, ensuring cybersecurity and protecting sensitive data is paramount at Wonder Cement. We have implemented advanced technologies such as artificial intelligence and machine learning (AI/ML) for threat detection and response, and Secure Access Service Edge (SASE) to provide secure and efficient network access. Additionally, our Security Operations Centre (SOC) continuously monitors our digital infrastructure, utilising AI/ML to identify and mitigate potential threats in real-time. Comprehensive cybersecurity measures, including firewalls, intrusion detection systems, and regular security audits, further safeguard our systems. We also conduct regular training sessions for our employees to raise awareness about cybersecurity best practices and potential threats. By prioritising cybersecurity, we ensure the confidentiality, integrity, and availability of our critical data and systems, staying ahead of emerging cyber threats.
What future IT trends do you foresee having the most significant impact on the cement industry, and how is your organisation preparing to embrace these trends?
Looking ahead, we foresee several IT trends that will significantly impact the cement industry. These include the further integration of AI and machine learning for advanced process optimisation, the adoption of blockchain technology for transparent and secure supply chain management, and the expansion of IoT applications for enhanced monitoring and control. Additionally, the use of drones for site inspections, computer vision for quality control, generative AI for innovative design solutions, and robotics and RPA for automating repetitive tasks will bring substantial benefits. At Wonder Cement, we are actively preparing to embrace these trends by investing in research and development, collaborating with technology partners, and continuously upgrading our IT infrastructure. Our proactive approach ensures that we remain at the forefront of technological advancements, driving innovation and maintaining our competitive edge.
– Kanika Mathur
At the World Cement Association’s annual conference the WCA Director, Emir Adiguzel addressed the global cement industry to outline the challenges and opportunities facing the global cement industry.
The conference held in Nanjing, had industry leaders, innovators and stakeholders in attendance to discuss the future of cement production and sustainability. The WCAA director emphasised on the cement industry’s stern commitment to sustainability; spoke about the global cement demand and market dynamics, projecting a period of stagnation from 2024-2030 with growth expected only in the Middle east, India and Africa; about the challenges and opportunities in carbon capture technology hat show promise but will need further development and substantial investment as well as about the strategic initiatives and collaboration within the industry in improving sustainability and operational performance.
Adiguzel concluded his address by highlighting the crucial point where the global cement industry stands by saying “Collaboration within the World Cement Association is essential for sharing knowledge and aligning on long-term objectives. Ensuring the industry’s resilience and adaptation to evolving market dynamics is crucial for the survival of independent cement producers”.