Connect with us

Economy & Market

ACC Ltd: Marching ahead

Published

on

Shares
ACC Ltd is one of the front runners in the cement industry in India and produces some of the best quality cement in the country. It has a significant market share in the segments of housing, real estate, infrastructure and other development projects. With more and more developmental projects coming up, the profit and the market share of the company is expected to rise at a considerable rate.
In an era when mergers and acquisition were unknown, 10 cement companies belonging to the Tatas, Khataus, Killick Nixon and F E Dinshaw came together in the year 1936 and merged into a single entity, which is today known as ACC Ltd. The company has a pan-India presence, with operation spread across the country with 14 modern cement factories having a total installed capacity of 22.4 MTPA, a string of 20 sales offices and a countrywide distribution network of over 9,000 dealers. It has a workforce of more than 10,000 persons.

ACC has been credited of introducing many firsts in India. In 1947, India’s first indigenous cement plant was built by at Chaibasa by ACC. The company commissioned the country’s first million tonne kiln at Wadi in 1982, and has erected the world’s largest cement kiln with a daily capacity of 12,500 tonne. From a production capacity of one million tonne per annum in 1936, the company has achieved a capacity of 22.5 MTPA. ACC also set many trends in the cement industry. One of the most significant was the introduction of blended cements. It used industrial waste like slag and fly ash, which helped in lowering greenhouse emission and conserving mineral wealth.

Products offered

The company manufactures 43 Grade Cement (OPC 43 Grade), 53 Grade Cement, Fly-ash based Portland Pozzolana Cement, and Portland Slag Cement. The OPC 43 Grade is the most commonly used cement in all constructions including plain and reinforced cement concrete, brick and stone masonry, floors and plastering. It is also used in the finishing of all types of buildings, bridges, culverts, roads, water retaining structures, etc. It has surpassed BIS Specifications (IS 8112-1989 for 43 grade OPC) on compressive strength levels. The 53 Grade Cement is an Ordinary Portland Cement which surpasses the requirements of IS: 12269-53 Grade. It is produced from high quality clinker ground with high purity gypsum. It provides high strength and durability to structures because of its optimum particle size distribution, superior crystalline structure and balanced phase composition. The fly-ash based Portland Pozzolana Cement is special blended cement, produced by inter-grinding higher strength ordinary Portland cement clinker with high quality processed fly ash-based on norms set by the ACC’s R&D division. This unique, value-added product has hydraulic binding properties not found in ordinary cements. The Portland Slag Cement is slag-based blended cement that imparts strength and durability to all structures. It is manufactured by blending and inter-grinding OPC clinker and granulated slag in suitable proportions as per norms of consistent quality. PSC has many superior performance characteristics which give it certain extra advantages when compared to ordinary Portland cement. The PSC is eco-friendly cement as reduces CO2 emissions and helps in conserving energy.

Plants

The cement plants of ACC are located in various regions of the country in a number of states. The gadgets and equipment are of high standards and comply with the international standards. Presently there are around 15 cement plants of ACC which cater to the different market segments of the country. The cement plants work in coordination with each other and also independently to increase the market share. All these cement plants use cutting edge technologies and services are equipped with advanced technological facilities which make them completely environment-friendly. The plants use some of the sophisticated pollution control devices in various parts such as raw mills, power plants, cement kilns, coolers and other equipments. In addition, the mining technologies that have been implemented in the cement plants of ACC are also based on environment safeguard norms. ACC’s cement plants consist of high quality Zero Water Discharge facilities which help in proper water management. The water that is used in the plant for the process of industrial cooling is recycled by the use of tanks, water ponds and cooling towers. Through this process, the company has been successful in water harvesting.

Subsidiary and associates

The subsidiary and associates of the company are ACC Concrete Ltd, ACC Mineral Resources Ltd, Bulk Cement Corporation (India) Ltd, National Limestone Company Pvt Ltd and Encore Cement & Additives Private Ltd. ACC set up India’s first commercial Ready Mix Concrete (RMX) plant in Mumbai in 1994. Today this business has been re-organised as a separate company called ACC Concrete Ltd which is one of the largest manufacturers of RMX in India with over 55 modern plants in major cities such as Mumbai, Bangalore, Kolkata, Chennai, Delhi, Hyderabad, Goa, Pune and Ahmedabad. ACC’s wholly owned subsidiary, The Cement Marketing Company of India Ltd, was renamed as ACC Mineral Resources Ltd (AMRL) in May 2009 with an objective of securing valuable mineral resources, such as coal for captive use. ACC Mineral Resources Ltd has entered into joint venture arrangements for prospecting, exploration and mining coal from the coal blocks in Madhya Pradesh and West Bengal. The company is also exploring other opportunities for securing additional coal and gypsum resources in India and abroad. The Bulk Cement Corporation (India) Ltd is situated at Kalamboli, Navi Mumbai and caters to bulk cement requirements. It has two cement storage silos with a capacity of 5,000 tonne each. The plant receives cement in bulk from ACC plants at Wadi. The plant has its own special purpose railway wagons and rakes and its own railway siding. A first of its kind in India, it is equipped with all the facilities required by increasingly sophisticated construction sites in a bustling metropolis, including a laboratory, a fleet of specialised trucks and site silos for the convenience of customers and is capable of offering loose cement in bulk-tanker vehicles as well as packed cement in bags of varying sizes from 1 ton down to 25 kg bags. It is situated strategically on the outskirts of Mumbai, just off the Mumbai-Pune Expressway and is spread over 30 acres of land. ACC acquired 100 per cent of the equity of Lucky Minmat Pvt Ltd. This company holds limestone mines in the Sikar district of Rajasthan, and helps supplement limestone supply to the Lakheri Plant. National Limestone Company Pvt Ltd is a wholly owned subsidiary and is engaged in the business of mining and sale of limestone. It holds mining leases for limestone in the state of Rajasthan. ACC acquired 100 per cent of the financial equity of Encore Cement & Additives Pvt Ltd which is a slag grinding plant in Vishakhapatnam in coastal Andhra Pradesh. This company became a wholly-owned subsidiary of ACC in January 2010.

Corporate Social Responsibly

The CSR activities of ACC revolves around the underprivileged community that lives in the immediate vicinity of cement plants and is thus more dependent on their welfare. The range of activities begins with extending educational and medical facilities and goes on to cover vocational guidance and supporting employment-oriented and income-generation projects like agriculture, animal husbandry, cottage industries by developing local skills, using local raw materials and helping create marketing outlets. At all the cement factories of ACC the amenities and facilities are shared with members of the local community. This includes sharing education and medical facilities, sports and recreation. The company also shares access to bore wells, drinking water and the usage of colony roads. In its endeavor towards greenery, the company has also started various types of afforestation, horticulture and tree planting programmes near its cement plants. It not only reduces pollution but also helps conserve the mineral resources. The vacant spaces in the mines and the cement plans are being utilised for the purpose of planting of trees. In cement plants at Chaibasa, Kymore, Jamul and Gagal, greenery has been added to around 40 per cent of the total area which is around 10 per cent more than the normal norms that has been set. The management of these plants is stressing on the green belt development programmes. Due to the high production as well as the dedicated effort towards maintaining ecological balance and nature conservation, the company and its cement plans have been the recipient of a number of prestigious awards.

Awards & Accolades

ACC was the first recipient of ASSOCHAM’s first ever National Award for outstanding performance in promoting rural and agricultural development activities in 1976. Decades later, PHD Chamber of Commerce and Industry selected ACC as winner of its Good Corporate Citizen Award for the year 2002. Over the years, the company has received many awards and felicitations for achievements in rural and community development, safety, health, tree plantation, afforestation, clean mining, environment awareness and protection.

The Wadi cement plant of ACC Limited, in India’s southern state of Karnataka, now enjoys the distinction of being the world’s largest cement plant. The company recently completed this challenging integrated cement project in Karnataka comprising an expanded clinkering line of 12,500 TPD at Wadi together with two satellite cement grinding plants manufacturing Portland Slag cement and flyash based Portland Pozzolana Cement.

All operations at Wadi are now mammoth in scale and setting new trends and benchmarks – the largest limestone mining operations, the largest captive power plant in the industry, largest in inward and outbound logistics and the largest in bulk cement operations. The project reinforces ACC’s commitment to environment conservation in more ways than one. The plant incorporates sophisticated environment management systems and equipment that are designed to maintain very high levels of emission control.

Marching ahead With the government’s determined focus on infrastructure development and an optimistic outlook for overall GDP growth, the demand for cement will receive a considerable boost. The future for ACC looks bright and it is poised to grow at a much faster rate in coming decades due to its strong pan India presence, well entrenched dealership network, technical excellence, human resources, brand equity and market growth. Awards received by ACC National Award for Excellence in Water Management by Confederation of Indian Industry (CII)

  • Outstanding Corporate Vision, Triple Impact Business Performance Social & Environmental Action and Globalisation for 2009-10 from Federation of Indian Chambers of Commerce and Industry
  • Asia Pacific Entrepreneurship Award in two categories, Green Leadership and Community Engagement by Enterprise Asia.
  • Indira Priyadarshini Vrikshamitra Award by The Ministry of Environment and Forests for ?extraordinary work? carried out in the area of afforestation.
  • Subh Karan Sarawagi Environment Award – by The Federation of Indian Mineral Industries for environment protection measures.
  • Drona Trophy – By Indian Bureau of Mines for extra ordinary efforts in protection of Environment and mineral conservation in the large mechanized mines sector.
  • Indira Gandhi Memorial National Award – for excellent performance in prevention of pollution and ecological development
  • Excellence in Management of Health, Safety and Environment : Certificate of Merit by Indian Chemical Manufacturers Association
  • Good Corporate Citizen Award – by PHD Chamber of Commerce and Industry
  • FIMI National Award – for valuable contribution in Mining activities from the Federation of Indian Mineral Industry under the Ministry of Coal.
  • Rajya Sthariya Paryavaran Puraskar – for outstanding work in Environmental Protection and Environment Performance by the Madhya Pradesh Pollution. Control Board.
  • National Award for Fly Ash Utilisation – by Ministry of Power, Ministry of Environment & Forests and Dept of Science & Technology, Govt of India – for manufacture of Portland Pozzolana Cement.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

The primary high-power applications are fans and mills

Published

on

By

Shares

Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.

As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.

How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.

What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.

Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.

Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.

How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.

What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.

Continue Reading

Concrete

We conduct regular internal energy audits

Published

on

By

Shares

Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.

In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.

How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.

What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.

What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.

What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.

How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.

What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.

Continue Reading

Concrete

Digitalisation is pivotal in driving energy efficiency

Published

on

By

Shares

As energy costs continue to dominate the cement industry, efficiency and sustainability are proving to be vital components. MM Rathi, Joint President, Power Management, Shree Cement, explains the company’s long-term strategy is focused on cutting emissions while powering growth with renewable energy solutions.

Energy efficiency has always been a cost-saving lever for the cement industry. Today, it is the backbone of sustainability and competitiveness. Cement manufacturers are under growing pressure to optimise consumption, diversify power sources and align with decarbonisation targets. Shree Cement has been at the forefront of this transformation, significantly scaling up its green power capacity and embedding advanced technologies across operations. In this exclusive conversation, MM Rathi, Joint President – Power Management, Shree Cement, shares insights on the company’s approach to energy efficiency, challenges in brownfield modernisation and long-term strategies for achieving net zero alignment.

What percentage of your total operational cost is attributed to energy consumption?
At Shree Cement, energy is one of the most significant components of production cost, accounting for nearly 30 per cent to 40 per cent of total operational expenses. Within this, thermal energy typically contributes around 20 per cent to 25 per cent, while electrical energy forms about 10 per cent to 15 per cent. The exact share varies depending on factors such as the fuel mix (coal, pet coke or alternative fuels and raw materials), the power source (grid-based or captive like solar, wind or thermal), raw mix quality, and regional fuel and electricity price variations. This makes energy efficiency and the adoption of sustainable power sources a key focus area, both from a cost and sustainability perspective.

How has your company improved energy efficiency over the past five years?
Over the past five years, Shree Cement has consistently invested in enhancing energy efficiency across operations. Our green power capacity, covering wind, solar and Waste Heat Recovery (WHR), has more than doubled from 245 MW in 2020 to 592 MW in 2025. All grinding units are now equipped with biomass firing facilities, reducing dependence on conventional fuels. From the project stage itself, we prioritise efficiency by selecting advanced technologies such as six-stage kilns with integrated WHR, CFD-designed plants, and equipment fitted with VFDs, centrifugal compressors and high-efficiency fans. We also review and upgrade equipment systematically, replacing fans, compressors, blowers, pumps, boilers and turbines with more efficient options. This continuous approach has reduced costs while significantly advancing our sustainability journey.
What technologies or practices have shown the highest energy-saving potential in cement production?
WHR stands out as one of the most effective solutions, offsetting a significant portion of electricity required for clinker production. Hot air recirculation has also proven highly beneficial in reducing heat losses. Additionally, regular energy audits help us identify opportunities for improvement and implement corrective measures in daily operations. Together, these practices play a critical role in optimising energy efficiency and driving sustainable operations.

What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
The biggest challenge is the significant upfront investment required for upgradation. Retrofitting existing facilities often involves complex civil and structural modifications, which add costs and extend downtime. Integration is another hurdle, as new high-efficiency equipment may not align seamlessly with older kiln systems, fans, mills or automation setups. These factors make the transition in brownfield plants more resource-intensive and time-consuming compared to greenfield projects.

How do you measure and benchmark energy performance across different plants?
We track key performance indicators such as specific heat consumption and specific power consumption for each unit, benchmarking them against internal and external standards. Thermal Substitution Rate (TSR percentage) is another critical metric, measuring the share of alternative fuels in the thermal energy mix. Internally, we benchmark performance across plants to encourage best practice sharing. Externally, we compare against national averages and align with the Bureau of Energy Efficiency’s PAT (Perform, Achieve, Trade) scheme, which sets Specific Energy Consumption (SEC) baselines and targets for cement plants. This multi-layered approach ensures continuous monitoring, improvement, and industry leadership in energy efficiency.

What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation is pivotal in driving energy efficiency at Shree Cement. IoT sensors integrated with SCADA and DCS systems allow real-time monitoring of parameters like heat consumption and energy use, moving beyond periodic reports. Our digital platforms consolidate plant data, enabling management to compare metrics such as SPC, SHC, kWh per tonne and kcal per kg across units in real time. This visibility supports data-driven decisions, faster corrective actions, and higher operational efficiency.

How do government policies and incentives influence your energy-saving decisions?
Government policies and incentives strongly shape our energy-saving decisions. The Perform, Achieve, Trade (PAT) scheme sets plant-specific SEC targets. Non-compliance incurs penalties, while compliance earns tradable energy-saving certificates. This ensures energy efficiency is both cost-driven and regulatory. Additionally, subsidies and viability gap funding for renewable energy projects in wind, solar and AFR co-processing help reduce payback periods and make energy-saving investments more viable.

What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
Our long-term strategy aligns energy efficiency with India’s net zero 2070 goals. Key levers include improving efficiency, expanding green electricity, producing more blended cement, and increasing alternative fuel use. Today, more than 60 per cent of our electricity comes from green sources such as solar, wind, and WHR, the highest in India’s cement industry. Our blended cement products, which reduce limestone and fuel consumption, further lower emissions. These products are certified under the GreenPro ecolabel by CII, validating our sustainability practices and environmental standards.

Continue Reading

Trending News