Connect with us

Economy & Market

Cementing Change: India’s Innovation Blueprint

Published

on

Shares

ICR delves into the groundbreaking innovations transforming India’s cement industry — from carbon capture and digitalisation to sustainable engineering and material resilience. Discover how technology and collaboration are shaping a low-carbon, competitive future.

India’s cement industry is at a pivotal turning point—evolving from traditional production methods to an era defined by advanced technology, sustainability, and operational reinvention. According to a report by the India Brand Equity Foundation (IBEF), demand growth of 6 per cent to 7 per cent is projected for FY25, following a robust 7 per cent to 8 per cent YoY increase in the last quarter of FY24. This momentum, driven by urbanisation, infrastructure expansion, and policy pushes like the PM Gati Shakti National Master Plan, underscores the need for the industry to evolve not just in capacity but in how it innovates, optimises, and decarbonises. Meanwhile, a report by ResearchAndMarkets estimates the Indian cement market will reach US $18.39 billion by 2025 at a 6.6 per cent CAGR, while the green-cement segment is expected to grow from US $2.31 billion (2024) to US $3.28 billion (2030)—clear signs that innovation has shifted from aspiration to necessity for competitiveness and carbon compliance. Amid this growth and environmental urgency, path-breaking innovations are transforming every link in the cement value chain—from carbon capture and digitalisation to sustainable packaging, data-driven manufacturing, and energy optimisation. As plants embrace Industry 4.0 and embed sustainable engineering at their core, the industry is transitioning from volume-led expansion to value-led transformation. The trajectory is clear: India’s cement producers are no longer just making cement—they are redefining it, building a low-carbon foundation for the nation’s next phase of infrastructure and sustainable growth.

CCUS: Cement’s Net-Zero Catalyst
For hard-to-abate process emissions in cement, Carbon Capture, Utilisation and Storage (CCUS) has moved from concept to large-scale implementation. Global first-of-a-kind projects are proving commercial viability: Heidelberg Materials’ Brevik CCS facility in Norway will capture ~400,000 tCO2/year (~50 per cent of the plant’s emissions), with its evoZero cement already pre-sold for 2025, as reported by Reuters. Similarly, Holcim’s GO4ZERO project in Belgium targets ~1.1 MtCO2/year capture by 2029, part of a broader 5 MtCO2/year ambition supported by the EU Innovation Fund. India is preparing to follow this trajectory—Dalmia Cement, in partnership with Carbon Clean, is developing a 500,000 tCO2/year CCUS plant in Tamil Nadu, aligning with its carbon-negative 2040 goal, as mentioned in company releases and an ADB analysis. Policy mechanisms are also emerging: the Global CCS Institute/GCCA policy brief (2024) proposes a Carbon Capture Finance Corporation and innovative funding tools to de-risk early projects, while NITI Aayog’s CCUS roadmap highlights the urgent need for large-scale demonstrations. Together, these moves signal that CCUS is shifting from research to reality, and India aims to be part of this global transformation.
Dr SB Hegde, Global Industry Expert say, “The cement industry’s path to net zero requires a phased and coordinated innovation roadmap. In the near term (2025–2030), emphasis must be on energy efficiency, clinker substitution, AFR, WHR, and digital optimisation, which are already proven and cost-effective. The next decade (2030–2040) will see wider adoption of electrification and carbon capture technologies, supported by renewable energy and green hydrogen. By 2040–2050, advanced low-carbon clinkers, carbon-negative binders, and circular material use will dominate, enabling deep decarbonisation. Together, these phases form a realistic pathway to cut CO2 emissions by over 70 per cent while ensuring competitiveness and resilience.”
Beyond capture, CO2 utilisation is equally vital—turning emissions into economic value through mineral carbonation, CO2-cured concrete, and carbonated aggregates. Europe’s Northern Lights project under Norway’s Longship program has already begun receiving CO2 shipments from Brevik, with plans to scale to ~5 MtCO2/year, as mentioned in the Financial Times. For India, where geological storage mapping and pipeline infrastructure are still evolving, near-site utilisation in construction materials or chemical feedstocks can bridge the economic gap until storage clusters—such as those planned along the west coast—are operational. The strategic path forward involves modular, retrofit-friendly capture systems, integration with energy efficiency and AFR initiatives, and the use of offtake and CFD-style instruments to offset early costs. As a report by TERI emphasises, India’s net-zero pathway by 2070 hinges on CCUS alongside clinker substitution, alternative binders, and renewable integration. The opportunity for Indian cement lies in acting early—turning CCUS from an obligation into a competitive advantage in the race for sustainable manufacturing.

Digital transformation
From quarry to kiln to bagging, Indian cement plants are rapidly shifting from manual set-points to sensor-driven, AI-supervised operations. Advanced Process Control (APC) and machine learning now fine-tune dozens of variables in real time—stabilising the pyroprocess, optimising fuel use, and minimising quality variance. As mentioned in ABB’s Expert Optimiser materials, these systems typically deliver 3 per cent to 5 per cent energy savings and 3 per cent to 5 per cent production gains while cutting emissions—results that have converted skeptics into advocates. For Indian operators navigating volatile fuel mixes and ambitious Thermal Substitution Rate (TSR) goals, such optimisations provide tangible, repeatable ROI. India already holds a global efficiency edge—as reported by the CII–Sohrabji Godrej Green Business Centre (2023), the top 10 plants operate below 70 kWh/t cement and 690 kcal/kg clinker, with best-achieved benchmarks of 56.1 kWh/t and 675 kcal/kg, underscoring the impact of digitisation on sustaining world-class performance.
Tushar Kulkarni, Business Head – Minerals – Cement & Mining, Innomotics India says, “India’s cement industry has long been at the forefront of adopting cutting-edge industrial technologies—ranging from Intelligent MCCs and MV/LV drive systems to full-scale plant DCS automation—placing it among the global leaders in energy-efficient and digitally enabled manufacturing. These initiatives have translated into significant gains in energy reduction and operational efficiency across plants. The sector is now entering a new phase of transformation, embracing innovations like AI-driven process optimisation (AI Pyro, AI Mill), electrification of kilns, and Carbon Capture, Utilisation & Storage (CCUS). Encouragingly, several of these technologies are already under feasibility assessment or pilot implementation, reflecting the industry’s readiness to leverage advanced automation and electrification as key enablers of decarbonisation.”
“However, scaling these innovations industry-wide still faces tangible barriers. Many plants continue to operate with legacy systems that lack seamless data connectivity or structured historians, making AI model training and deployment difficult. Challenges such as non-standardised data formats, limited transparency of AI model performance, and uncertainty in calculating ROI often slow down investment decisions. Strengthening data infrastructure, building trust in AI outcomes, and upskilling teams in digital analytics will be crucial to unlocking the full potential of smart drives, advanced predictive control, and electrification. In the coming years, AI-based optimisation tools and CCUS technologies are poised to become game changers—helping India’s cement sector strike the balance between industrial productivity and its low-carbon future” he adds.
The next leap lies in scaling the digital flywheel—integrating process, maintenance, and logistics data into unified platforms powered by AI and predictive analytics. Plants combining APC, predictive maintenance, and digital twins will achieve steadier clinker quality, lower specific energy, and reduced downtime while preparing for CCUS-ready, low-carbon operations. With six-stage preheaters globally averaging 717–812 kcal/kg, India’s continuous optimisation keeps it at the efficient end of this spectrum. The lesson is clear: Industry 4.0 isn’t a parallel initiative—it’s the operating system of tomorrow’s path-breaking cement plant, where automation, data, and intelligence drive both sustainability and competitiveness.

Data-driven decisions
Across Indian cement plants, production is becoming data-rich and model-driven, with IoT sensor networks, AI models, and APC systems working in tandem to optimise kiln stability, fuel mix, and quality in real time. As mentioned in Holcim’s program page and a Global Cement report, the company’s Plants of Tomorrow initiative has deployed 2,100+ digital applications across 40+ countries, with AI software expected in ~100 plants by 2028. Indian leaders already operate at world-class efficiency, achieving ~56.1 kWh/t cement (electrical) and ~675 kcal/kg clinker (thermal), benchmarks maintained through data analytics and condition-based maintenance, as reported by the CII–Sohrabji Godrej Green Business Centre (2023). Downstream, digital control towers and route analytics have helped UltraTech cut average lead distance to ~400 km and logistics costs by ~2 per cent YoY. As mentioned in reports by the GCCA (2024/25) and the World Economic Forum (2024), digitalisation is now a central pillar of the global net-zero cement strategy, proving essential for an industry that contributes ~6 per cent of global CO2 emissions to maximise efficiency from kiln to dispatch.

Sustainable engineering
Sustainable engineering in India’s cement sector is advancing beyond efficiency gains toward holistic life-cycle design, where plant layout, raw materials, and product use all align with low-carbon goals. As mentioned in TERI’s roadmap, the industry must cut CO2 intensity to ~0.35 tCO2/t cement by 2050, down from 0.62 in 2010, while as per the OECD report, new plants should target ˜70 kWh/t (electrical) and ˜680 kcal/kg clinker (thermal). On the materials front, Limestone Calcined Clay Cement (LC³) and similar low-carbon binders can reduce emissions by 30 per cent to 40 per cent versus OPC. According to the Department of Science and Technology, cement and brick production currently emit 200–250 MtCO2 annually, underscoring vast decarbonisation potential. Sustainable engineering is thus no longer conceptual—it’s materialising through plant retrofits, alternative binders, and integrated design strategies that link sourcing, production, and construction into a single, optimised low-carbon chain.
Utssav Gupta, Director, Supertech Fabrics says, “India’s cement industry, as the second-largest producer globally, has made remarkable progress in adopting advanced filtration and emission control technologies. The country now enforces some of the most stringent environmental norms among developing economies, and new plants are being commissioned with state-of-the-art filtration systems that rival international benchmarks. More importantly, there is a visible intent among manufacturers to retrofit and upgrade older units, reflecting a strong national commitment to sustainability. As a material-producing nation, India’s openness to embracing innovation has allowed advanced filtration solutions to gain acceptance swiftly. This mindset shift—where manufacturers and end-users alike are eager to align with global best practices—positions India not as a follower but as a fast-rising leader in environmental performance and technological adaptability within the cement sector.”
“When it comes to modernising emission control systems, the challenge is not the lack of technology but the need for stronger instrumentation and data transparency. Real-time monitoring and consistent data sharing between OEMs, operators, and material suppliers remain critical to fine-tuning systems and achieving peak efficiency. Broader adoption of connected instrumentation could help perform deeper root cause analyses, enabling more precise optimisation and accountability. On the technology front, filtration science itself is undergoing a transformation—driven by material innovation that enhances both performance and longevity of filters. The next wave of filtration technologies will not only reduce particulate emissions but also improve plant sustainability and energy efficiency—marking another leap forward in India’s journey toward cleaner, smarter, and more resilient cement production” he adds.

Energy optimisation
Indian plants are squeesing megawatts from every °C of kiln heat while hard-wiring renewables into their grids. Waste-heat recovery (WHR) has scaled rapidly—installed capacity in India rose from ~240 MW to ~1,289 MW over the last decade, with leaders adding triple-digit megawatts in just a few years; UltraTech reports 351 MW of WHR capacity in FY 2024–25, while Ramco commissioned a new 10 MW WHRS in September 2025, signalling steady brownfield gains, as mentioned in a report by the CII–Sohrabji Godrej Green Business Centre and as mentioned in company/press updates. On the consumption side, global pathways raise the bar: the IEA’s NZE trajectory targets average kiln thermal intensity < 3.4 GJ/t clinker and electricity < 90 kWh/t cement by 2030—benchmarks that Indian best-performers are already approaching or beating, as mentioned in a report by the IEA.
The fuel and power mix is tilting greener at scale. UltraTech has publicly set 85 per cent “green energy” in the total energy mix by 2030 (with an interim 60 per cent by FY26) and surpassed 1 GW of installed renewable capacity—tying energy optimisation directly to cost and carbon, as mentioned in company disclosures. Shree Cement lifted green power to ~56 per cent to 66 per cent with ~582–586 MW of RE capacity (solar, wind, WHR), as mentioned in broker/market reports. Meanwhile, the switch to alternative fuels remains a major lever: industry assessments show Thermal Substitution Rate (TSR) adoption is rising but uneven across firms, with availability and pre-processing still the bottlenecks—yet TSR is pivotal to hitting sector targets, as mentioned in a report by CARE Edge ESG.

Reinventing packaging and storage
Moisture remains the silent enemy of bagged cement, driving a shift from stitched sacks to block-bottom, valve bags made of coated polypropylene (PP) that resist humidity, burst less, and run seamlessly on automated lines. Designs like AD*STAR® offer higher strength, moisture protection, and recyclability within PP streams, as mentioned in Starlinger’s overview, while Indian brands such as Bharathi Cement highlight tear resistance, micro-perforation, and near-zero bursting. Recycling infrastructure is expanding too—as mentioned in a report by the India Plastics Pact (2023), 819 mechanical recycling units now process recovered PP, supporting EPR-linked sack take-back programs under CPCB’s 2023–24 inventory. On the dispatch front, plants are deploying automatic bagging, robotic palletising, and warehouse control systems to reduce breakage and boost loading efficiency, as reported in automation case studies. With bulk loading, silo telemetry, and RFID-enabled yards improving traceability, India’s cement logistics are evolving toward moisture-resistant, recyclable packaging and end-to-end automation, ensuring every bag reaches the site intact—with its strength and brand promise preserved.
Frank Ormeloh, Business Unit Manager – Cement, Haver & Boecker says, India’s cement industry presents a fascinating paradox when it comes to integrated digital and hardware adoption. Despite the country’s global reputation for software excellence, the current level of integration between digital and mechanical systems in cement plants remains modest. Most investments still lean toward mechanical upgrades—from material handling to process machinery—while digital adoption lags behind. Yet, the potential for digital transformation is immense. Digital tools, from AI-based control systems to predictive analytics and smart mesh technologies, often come with lower cost thresholds and higher ROI compared to conventional mechanical retrofits. The industry’s growing openness to innovation, combined with India’s strong IT foundation, suggests a major opportunity to elevate operational intelligence through integrated digital-hardware ecosystems.”
“The true obstacles, however, are not technological but commercial and cultural. The prevalent “lowest price possible” mindset still overshadows the “maximum profit possible” philosophy needed to scale advanced mesh, AI, and robotic systems. To accelerate adoption, pioneers within the sector must step forward—those willing to demonstrate that smart, data-integrated plants are not only more efficient but also more sustainable, safe, and investor-attractive. HAVER & BOECKER envisions this transformation through Operation & Maintenance (O&M) partnerships, where experts co-manage packing facilities alongside customers, aligning technical excellence with business value. Proven in India’s chemical sector, this service-driven model aims to bring cement producers closer to “Perfect Flow,” redefining the material not as a low-cost commodity but as a high-value, innovation-driven product that embodies efficiency, sustainability, and long-term profitability” he adds.

Material resilience
A new generation of low-carbon binders is redefining cement’s material resilience by cutting emissions without compromising performance. Limestone Calcined Clay Cement (LC3) reduces CO2 by ~40 per cent while matching or exceeding OPC strength, lowering the clinker factor to ~50 per cent or less, as mentioned in or a report by RMI’s 2024 “Business Case for LC3” and the LC3 Global Assessment. Composition-level innovations such as Calcium Silicate Cement (CSC) further show up to 45.5 per cent energy and 35.1 per cent CO2 reductions versus OPC, owing to reduced limestone demand and lower sintering temperatures, as mentioned in or a report by Williams and Yang (2024). Beyond emissions, alkali-activated concretes (AAC) deliver ~54 per cent to 61 per cent lower CO2 and ~39 per cent to 70 per cent lower embodied energy, while maintaining high strength under thermal stress, as noted in peer-reviewed studies (2024–2025). For India, reducing the clinker factor through high-quality SCMs and alternative binders remains central, as mentioned in or a report by the GCCA Net Zero Progress Report (2024/25) and CII–GBC benchmarking data. The message is clear: material resilience now means lower embodied carbon, longer service life, and regionally optimised composites tailored to India’s diverse heat, moisture, and chloride conditions.
Jignesh Kundaria, CEO and Director, Fornnax says, “India’s cement industry has made significant progress in adopting IoT and predictive analytics, though maturity remains uneven across the sector. Leading manufacturers are integrating digital tools for process optimisation, equipment health monitoring, and real-time insights, but adoption is still in the early-to-mid stage compared to Europe, where digital ecosystems are more advanced. Encouragingly, Indian plants increasingly recognise that data drives efficiency, sustainability, and competitiveness, marking a cultural shift toward digitisation. The main barriers lie in infrastructure: many plants still use legacy systems incompatible with modern automation, making integration complex and costly. A shortage of digital talent and high upfront costs further slow progress. Yet the outlook is strong—modular, interoperable, and retrofit-friendly solutions are steadily lowering adoption barriers and enabling a scalable, cost-effective transition toward intelligent, data-driven cement operations across India..”

Human–tech synergy
The cement industry’s digital transformation is as much about people as it is about technology—where human expertise evolves alongside AI, digital twins, and robotics. As plants automate and adopt AI-based process control, job roles are shifting from manual operation to analytical decision-making. According to a report by Deloitte (2024), over 60 per cent of global manufacturers now prioritise reskilling in data analytics, IoT, and automation. India mirrors this trend—as mentioned in CII’s 2024 Future of Work in Manufacturing study, cement and heavy industry players are allocating up to 3 per cent of annual operational budgets to digital training, with UltraTech and ACC establishing in-house digital academies for process engineers and maintenance teams.
Dijam Panigrahi, Co-founder and COO, GridRaster says “The core of Industry 5.0 is the human operator. By having Spatial AI systems safely take over repetitive, monotonous, or highly dangerous tasks, plant personnel are liberated to focus on the highest-value work: complex process management, troubleshooting, and continuous process optimisation. This fosters a human-machine collaboration that drives innovation, enhances safety and ensures sustainability. Spatial AI is not merely a theoretical leap in digital twin technology; it is a concrete, actionable technology that is delivering immediate, impactful change on the plant floor. By simplifying complexity and driving setup time down to minutes, this technology is the essential accelerator that makes advanced industrial automation truly accessible to all cement manufacturers, marking the definitive arrival of the human-centric, high-efficiency world of Industry 5.0.”
As mentioned in a report by the NSDC (2025), over 75,000 workers in India’s materials and infrastructure sectors will require advanced digital skills by 2030. The GCCA calls this “digital sustainability”—training workers to manage systems that cut emissions and energy use, not just boost output. In practice, kiln engineers interpret AI dashboards, maintenance teams conduct predictive analytics, and logistics managers optimise CO2-efficient routes. The cement plant of the future is, therefore, a human–machine collaboration hub, where workforce adaptability is as critical as the algorithms driving efficiency and sustainability.

Conclusion
As India’s cement sector enters its next growth phase, the challenge is no longer scale but sustainability at scale. The nation already leads in energy efficiency and alternative fuels, yet the next leap demands embedding innovation into every tonne of cement—through CCUS, low-clinker blends like LC3, AI-driven process control, and green logistics. Supported by the National Green Hydrogen Mission, PAT scheme, and 2030 renewable targets, India’s ecosystem is aligning toward low-carbon, globally competitive manufacturing that exports not just cement but expertise. Achieving this will require deep collaboration among industry, academia, and policymakers, focusing on scalable CCUS, mineral carbonation, and regionally suited binders. As led by the GCCA and CMA, shared R&D platforms and policy-backed decarbonisation clusters—akin to Europe’s CCS hubs—can fast-track progress, while green bonds, blended finance, and carbon credits can de-risk early adoption. Ultimately, path-breaking innovation is India’s passport to a net-zero construction future—where digital intelligence, sustainable engineering, and circular materials converge to make every plant a lab for efficiency and every engineer an innovator. With bold collaboration and steadfast execution, India can transform its cement industry from a top emitter into a cornerstone of global green growth.

– Kanika Mathur

Concrete

Refractory demands in our kiln have changed

Published

on

By

Shares

Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.

As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.

How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.

What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.

How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.

Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.

How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.

What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.

How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.

What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes

These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.

Continue Reading

Concrete

Digital supply chain visibility is critical

Published

on

By

Shares

MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.

Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.

How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.

Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.

How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.

In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.

How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.

What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.

How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.

Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.

Continue Reading

Concrete

Cement Additives for Improved Grinding Efficiency

Published

on

By

Shares

Shreesh A Khadilkar discusses how advanced additive formulations allow customised, high-performance and niche cements—offering benefits while supporting blended cements and long-term cost and carbon reduction.

Cement additives are chemicals (inorganic and organic) added in small amounts (0.01 per cent to 0.2 per cent by weight) during cement grinding. Their main job? Reduce agglomeration, prevent pack-set, and keep the mill running smoother. Thus, these additions primarily improve, mill thru-puts, achieve lower clinker factor in blended cements PPC/PSC/PCC. Additionally, these additives improve concrete performance of cements or even for specific special premium cements with special USPs like lower setting times or for reduced water permeability in the resultant cement mortars and concrete (water repellent /permeation resistant cements), corrosion resistance etc.
The cement additives are materials which could be further differentiated as:

Grinding aids:
• Bottlenecks in cement grinding capacity, such materials can enhance throughputs
• Low specific electrical energy consumption during cement grinding
• Reduce “Pack set” problem and improve powder flowability

Quality improvers:
• Opportunity for further clinker factor reduction
• Solution for delayed cement setting or strength development issues at early or later ages.

Others: materials which are used for specific special cements with niche properties as discussed in the subsequent pages.
When cement additives are used as grinding aids or quality improvers, in general the additives reduce the inter-particle forces; reduce coating over grinding media and mill internals. Due to creation of like charges on cement particles, there is decreased agglomeration, much improved flowability, higher generation of fines better dispersion of particles in separator feed and reduction of mill filling level (decrease of residence time). However, in VRM grinding; actions need to be taken to have stable bed formation on the table.
It has been reported in literature and also substantiated by a number of detailed evaluations of different cement additive formulations in market, that the cement additive formulations are a combination of different chemical compounds, typically composed of:

  1. Accelerator/s for the hydration reaction of cements which are dependent on the acceleration effect desired in mortar compressive strengths at early or later ages, the choice of the materials is also dependent on clinker quality and blending components (flyash / slag) or a mix of both.
  2. Water reducer / workability / wet-ability enhancer, which would show impact on the resultant cement mortars and concrete. Some of the compounds (retarders) like polysaccharide derivatives, gluconates etc., show an initial retarding action towards hydration which result in reducing the water requirements for the cements thus act as water reducers, or it could be some appropriate polymeric molecules which show improved wet-ability and reduce water demand. These are selected based on the mineral component and type of cements (PPC/PSC /PCC).
  3. Grinding aids: Compounds that work as Grinding Aid i.e. which would enhance Mill thru-put on one hand as well as would increase the early strengths due to the higher fines generation/ or activation of cement components. These compounds could be like alkanol-amines such as TIPA, DEIPA, TEA etc. or could be compounds like glycols and other poly-ols, depending on whether it is OPC or PPC or PSC or PCC manufacture.

Mechanism of action — Step By Step—

  1. Reduce Agglomeration, Cement particles get electrostatically charged during grinding, stick together, form “flocs”, block mill efficiency, waste energy. Grinding aid molecules adsorb onto particle surfaces, neutralise charge, prevent re-agglomeration.
  2. Improve Powder Flowability, Adsorbed molecules create a lubricating layer, particles slide past each other easier, better mill throughput, less “dead zone” buildup.
    Also reduces caking on mill liners, diaphragms, and separator screens, less downtime for cleaning.
  3. Enhance Grinding Efficiency (Finer Product Faster), By preventing agglomeration, particles stay dispersed more surface area exposed to grinding media, finer grind achieved with same energy input, Or: same fineness achieved with less energy, huge savings.
    Example:
    • Without aid ? 3500 cm²/g Blaine needs 40 kWh/ton
    • With use of optimum grinding aid same fineness at 32 kWh/ton 20 per cent energy savings
  4. Reduce Pack Set and Silo Caking Grinding aids (GA) inhibit hydration of free lime (CaO) during storage prevents premature hardening or “pack set” in silos. especially critical in humid climates or with high free lime clinker.
    It may be stated here that Overdosing of GA can cause: – Foaming in mill (especially with glycols) reduces grinding efficiency, retardation of cement setting (especially with amines/acids), odor issues (in indoor mills) – Corrosion of mill components (if acidic aids used improperly)
    The best practice to optimise use of GA is Start with 0.02 per cent to 0.05 per cent dosage test fineness, flow, and set time adjust up/down. Due to static charge of particles, the sample may stick to the sides of sampler pipe and so sampling need to be properly done.
    Depending on type of cements i.e. OPC, PPC, PSC, PCC, the grinding aids combinations need to be optimised, a typical Poly carboxylate ether also could be a part of the combo grinding aids

Cement additives for niche properties of the cement in concrete.
The cement additives can also be tailor made to create specific niche properties in cements, OPC, PPC, PSC and PCC to create premium or special brands. The special niche properties of the cement being its additional USP of such cement products, and are useful for customers to build a durable concrete structure with increased service life.


Such properties could be:
• Additives for improved concrete performance of cements, high early strength in PPC/PSC/PCC, much reduced water demand in cement, cements with improved slump retentivity in concrete, self-compacting, self levelling in concrete, cements with improved adhesion property of the cement mortar
• Water repellence / water proofing, permeability resistance in mortars and concrete.
• Biocidal cement
• Photo catalytic cements
• Cements with negligible ASR reactions etc.

Additives for cements for improved concrete performance
High early strengths: Use of accelerators. These are chemical compounds which enhance the degree of hydration of cement. These can include setting or hardening accelerators depending on whether their action occurs in the plastic or hardened state respectively. Thus, the setting accelerators reduce the setting time, whereas the hardening accelerators increase the early age strengths. The setting accelerators act during the initial minutes of the cement hydration, whereas the hardening accelerators act mainly during the initial days of hydration.
Chloride salts are the best in class. However, use of chloride salts as hardening accelerators are strongly discouraged for their action in promoting the corrosion of rebar, thus, chloride-free accelerators are preferred. The hardening accelerators could be combinations of compounds like nitrate, nitrite and thiocyanate salts of alkali or alkaline earth metals or thiosulphate, formate, and alkanol amines depending on the cement types.
However, especially in blended cements (PPC/PSC/PCC the increased early strengths invariably decrease the 28 day strengths. These aspects lead to creating combo additives along with organic polymers to achieve improved early strengths as well as either same or marginally improved 28 days strengths with reduced clinker factor in the blended cement, special OPC with reduced admixture requirements. With use of appropriate combination of inorganic and organic additives we could create an OPC with substantially reduced water demand or improved slump retentivity. Use of such an OPC would show exceptional concrete performance in high grade concretes as it would exhibit lower admixture requirements in High Grade Concretes.
PPC with OPC like properties: With the above concept we could have a PPC, having higher percentage flyash, with a combo cement additive which would have with concrete performance similar to OPC in say M40/M50 concrete. Such a PPC would produce a high-strength PPC concrete (= 60 MPa @ 28d) + improved workability, durability and sustainability.
Another interesting aspect could also be of using ultrafine fine flyash /ultrafine slags as additions in OPC/PPC/PSC for achieving lower clinker factor as well as to achieve improved later age strengths with or without a combo cement additive.
The initial adhesion property at sites of especially PPC/PSC/PCC based mortars can be improved through use of appropriate organic polymers addition during the manufacture of these cements. Such cements would have a better adhesion property for plastering/brick bonding etc., as it has much lower rebound loss of their mortars in such applications.
It is needless to mention here that with use of additives, we could also have cement with viscosity modifying cement additives, for self-compaction and self-leveling concrete performance.
Use of Phosphogypsum retards the setting time of cements, we can use additive different additive combos to overcome retardation and improve the 1 day strengths of the cements and concretes.

About the author:
Shreesh Khadilkar, Consultant & Advisor, Former Director Quality & Product Development, ACC, a seasoned consultant and advisor, brings over 37 years of experience in cement manufacturing, having held leadership roles in R&D and product development at ACC Ltd. With deep expertise in innovative cement concepts, he is dedicated to sharing his knowledge and improving the performance of cement plants globally.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds