Connect with us

Concrete

Green cement: Smart strategy

Published

on

Shares

As India races to build its future, green cement emerges as a powerful tool to balance growth with sustainability. Through innovative technologies and supportive policies, the cement industry is sculpting a low-carbon pathway for construction—toward climate-resilient infrastructure.

India’s rapid urbanisation and infrastructure development have positioned it as the second-largest cement producer globally. However, this growth comes with environmental challenges, as the cement industry contributes approximately six per cent of the country’s total greenhouse gas emissions. In response, the industry is increasingly turning to green cement—a sustainable alternative that aims to reduce the environmental footprint of construction activities.
According to a report by Ernst & Young Parthenon (published February 2025), India is positioning itself as a pivotal force in the global green hydrogen economy, leveraging hydrogen’s potential as a clean and adaptable energy source to drive its decarbonisation. The National Green Hydrogen Mission, launched in January 2023, encourages the production and utilisation of this clean energy source. Green hydrogen is set to play a vital role in decarbonising sectors like steel, cement, and transportation, significantly reducing the nation’s carbon footprint.
Hard-to-abate industries like steel, cement, power and utilities, oil and gas, auto-OEMs are high energy consuming and high emitting. These industries are pivotal for economic growth and hence its quintessential for them to decarbonise their production processes if India is to meet its emissions-reduction goals. The emission contribution of these sectors is expected to grow in the coming years. EY analysis indicates that the critical manufacturing sectors would reach a mark of ~2 gigaton CO2 emissions annually in the next 15 years.
Green cement minimises emissions by using alternative materials and low-carbon production techniques. Primary raw materials for this include industrial waste products like blast furnace slag and fly ash, reducing the clinker-to-cement ratio and an effort to close the loop across the cement production value chain as well.
Satish Maheshwari, Chief Manufacturing Officer, Shree Cement, says, “The future of green cement in global construction is set for rapid transformation, driven by sustainability goals and evolving industry demands. With stricter carbon regulations and a growing push for green-certified buildings, the shift toward low-carbon materials is accelerating. Green cement offers more than just environmental benefits. Its superior tensile strength and corrosion resistance make it a viable alternative to traditional cement. Builders are increasingly recognising its role in enhancing long-term project value while reducing carbon footprints.”
India’s cement industry, the world’s second-largest, plays a pivotal role in the nation’s infrastructure and economic development. However, it also contributes approximately 5.8 per cent of the country’s CO2 emissions as of 2022. Recognising this environmental challenge, India has committed to achieving net-zero emissions by 2070, with an interim goal of sourcing 50 per cent of its electricity from renewable sources by 2030. The transition to green cement—produced using alternative fuels and raw materials—offers a viable pathway to reduce the industry’s carbon footprint while supporting sustainable growth.

Understanding green cement
Green cement refers to cementitious materials produced using sustainable methods, incorporating alternative raw materials and energy-efficient processes. Unlike traditional Portland cement, which relies heavily on clinker—a primary source of CO2 emissions—green cement utilises industrial by-products such as fly ash, slag and silica fume. These substitutions not only reduce carbon emissions but also enhance the durability and performance of the final product.
The IMARC Group’s report on the India Green Cement Market highlights the pivotal role of alternative raw materials in driving the sector’s growth. In 2024, the market was valued at USD 1.6 billion and is projected to reach USD 2.8 billion by 2033, exhibiting a CAGR of 6.11 per cent during 2025–2033. This growth is largely attributed to the increasing incorporation of industrial by-products such as fly ash, slag and silica fume in green cement production. These materials, by substituting traditional inputs like limestone and clay, not only reduce the reliance on finite natural resources but also lower the carbon emissions associated with cement manufacturing. Additionally, certain green cement formulations have the capability to absorb carbon dioxide during the curing process, further mitigating their environmental impact.
The report also underscores a broader industry shift towards sustainable construction practices in India. The adoption of alternative raw materials aligns with national efforts to reduce the environmental footprint of the construction sector. By leveraging industrial waste products, the green cement industry not only addresses waste management challenges but also contributes to the creation of more sustainable building materials. This approach supports India’s commitment to environmental sustainability and positions green cement as a viable solution for eco-conscious construction projects.

Market dynamics: Growth and projections
The Indian green cement market has witnessed significant growth, valued at US$ 2.31 billion in 2024 and projected to reach US$ 3.28 billion by 2030, growing at a CAGR of 5.85 per cent. This upward trajectory is driven by increasing environmental awareness, government initiatives promoting sustainable construction, and the rising demand for eco-friendly building materials.
A key driver of the Indian green cement market is the growing environmental awareness among consumers, builders and developers. Heightened by visible climate change impacts, media coverage, and educational initiatives, this awareness has fuelled demand for eco-friendly construction materials that reduce the carbon footprint. Green cement, with its lower embodied carbon, reduced energy consumption during production, and responsible use of raw materials, is increasingly preferred over traditional alternatives. Certifications such as Leadership in Energy and Environmental Design (LEED) and recognition from the Green Building Council of India (GBCI) have further incentivised the use of sustainable materials, motivating developers to
adopt green cement in order to meet regulatory and client expectations.
Manoj Rustagi, Chief Sustainability Officer, JSW Cement says, “In India, in the last couple of years, there have been many policy interventions which have been initiated. One of them, namely the carbon market is under notification; others like Green Public Procurement, Green Cement taxonomy and National CCUS Mission are in the advanced stages and are expected to be implemented in the next couple of years.”
This shift aligns with India’s broader sustainability goals. The country, one of the world’s largest producers of renewable energy, had achieved over 175 GW of renewable energy capacity—including solar and wind power—by 2024. With an ambitious target of reaching 500 GW by 2030, the focus on reducing environmental impact across sectors, including construction, is stronger than ever. As a result, green cement is emerging as a crucial component in India’s transition toward sustainable infrastructure and development.

Environmental impact: Reducing the carbon footprint
Traditional cement production emits approximately 0.66 tonnes of CO2 per tonne of cement. By adopting green cement technologies, this emission intensity can be reduced to 0.53 tonnes, representing a significant step toward decarbonising the sector. Moreover, the utilisation of industrial waste materials not only mitigates environmental pollution but also conserves natural resources.
Ganesh W Jirkuntwar, Senior Executive Director and National Manufacturing Head, Dalmia Cement (Bharat), says, “Low carbon cement not only matches but, in some cases, exceeds the durability of traditional cement. It offers superior resistance to chemical attack, chloride penetration and sulphate exposure, making it particularly well-suited for marine and industrial environments. Cements made with materials like fly ash or slag can achieve compressive strength comparable to that of Ordinary Portland Cement (OPC), though they may exhibit a slower initial strength gain that improves significantly over time.”
The Council on Energy, Environment and Water (CEEW) report, Evaluating Net-zero for the Indian Cement Industry, underscores the significant environmental impact of cement production in India. In the fiscal year 2018-19, the industry produced 337 million tonnes of cement, resulting in approximately 218 million tonnes of CO2 emissions. Notably, 56 per cent of these emissions stemmed from the calcination process during clinker production, 32 per cent from fuel combustion for process heating, and the remaining 12 per cent from electricity consumption. The report emphasises that while energy efficiency measures can reduce emissions intensity by 9 per cent, and the use of renewable energy and alternative fuels can contribute an additional 13 per cent reduction, a substantial 67 per cent of emissions would still need to be addressed through carbon management solutions such as carbon capture, utilisation and storage (CCUS).
Financially, the transition to a net-zero cement industry is substantial. The report estimates a requirement of US$ 334 billion in capital expenditure and an additional US$ 3 billion in annual operating costs to achieve full decarbonisation. However, it also highlights that implementing decarbonisation measures with negative mitigation costs can reduce emissions intensity by 20 per cent and even lower the cost of cement by 3 per cent. Further reductions up to 32 per cent in emissions intensity can be achieved without increasing current production costs by adopting efficient technologies and practices. Nevertheless, achieving net-zero emissions would necessitate the adoption of more expensive technologies like CCUS, which could increase the cost of cement by 19 to 107 per cent, depending on the specific methods employed.
Radhika Choudary, Co-Founder and Director, Freyr Energy, says, “Solar-powered plants amplify the environmental benefits of green cement by ensuring that its production processes—from raw material handling to kiln operations—are powered by clean energy. This reduces greenhouse gas emissions across every stage of the cement’s lifecycle. In addition, leveraging solar energy aligns with emerging green building certifications and sustainability frameworks, making the final product more attractive to eco-conscious developers and construction companies. By adopting solar energy holistically, cement manufacturers not only meet regulatory standards but also position themselves as industry leaders in climate-resilient infrastructure.”

Technological innovations driving green cement
Advancements in technology are central to the production of green cement in India. Innovations include the use of alternative raw materials such as fly ash, slag, and calcined clay, which reduce the reliance on traditional clinker and lower CO2 emissions. Additionally, energy-efficient manufacturing processes and the adoption of renewable energy sources are contributing to more sustainable cement production. By embracing these technological advancements, India’s cement sector can progress towards its decarbonisation goals, aligning with national and global sustainability targets.

Several technological advancements are propelling the adoption of green cement in India:

  • Alternative raw materials: Incorporating fly ash, slag, and other industrial by-products reduces reliance on clinker and lowers CO2 emissions.
  • Energy-efficient processes: Implementing waste heat recovery systems and optimising kiln operations enhance energy efficiency and reduce greenhouse gas emissions.
  • Carbon capture, utilisation and storage (CCUS): CCUS is emerging as a critical strategy for decarbonising India’s cement sector. Given that cement production is responsible for a significant share of industrial CO2 emissions, integrating CCUS technologies can substantially mitigate environmental impacts. The Global Cement and Concrete Association (GCCA) and the Global CCS Institute have identified potential CO2 storage sites across India, including saline formations and depleted oil and gas fields, which could be instrumental in implementing CCUS at scale.

Implementing CCUS in India requires a collaborative approach involving industry stakeholders, policymakers, and financial institutions. Developing supportive policy frameworks and financing mechanisms is essential to facilitate the deployment of CCUS technologies. Moreover, establishing CO2 hubs and infrastructure for transportation and storage will be crucial to the success of CCUS initiatives in the cement industry.
Dr Yogendra Kanitkar, VP – Research and Development, Pi Green Innovations, says, “CCUS is highly critical. If you are exporting to carbon-sensitive markets, you are likely to be hit with a carbon tariff. The Carbon Border Adjustment Mechanism (CBAM) is one such example. Even within India, the Carbon Credit Trading Scheme (CCTS) has been notified, and around 283 entities have been obligated to reduce their CO2 footprints. So, it’s extremely important for Indian industries to wake up to this reality. If you want to remain competitive in foreign markets, adopting CCUS is non-negotiable.”

Policy framework and government initiatives
The Indian government has introduced several policies to promote sustainable construction practices:

  • Perform, Achieve, and Trade (PAT) Scheme: Encourages industries to improve energy efficiency and reduce emissions.
  • National Action Plan on Climate Change (NAPCC): Outlines strategies for promoting sustainable development and reducing carbon emissions across various sectors.
  • Incentives for green buildings: Provides tax benefits and subsidies for adopting eco-friendly construction materials and practices.

These initiatives aim to align the cement industry with India’s commitment to achieving net-zero emissions by 2070.

Challenges and barriers to adoption
Despite the promising outlook, several challenges hinder the widespread adoption of green cement:

  • Cost implications: The initial investment for green cement technologies can be high, deterring small and medium-sized enterprises. The cost for decarbonising India’s cement industry amounts to more than US$330 billion in capital expenses and over US$3 billion in annual operating expenses, according to a report by Ernst & Young Parthenon (published February 2025)
  • Lack of awareness: Limited knowledge about the benefits and availability of green cement among consumers and builders affects demand.
  • Regulatory hurdles: Inconsistent regulations and standards across states can create confusion and impede adoption.
  • Supply chain constraints: Ensuring a consistent supply of alternative raw materials like fly ash and slag is crucial for sustained production.

Future outlook: Strategies for sustainable growth
To overcome these challenges and promote the adoption of green cement, the following strategies can be implemented:

  • Research and development: Investing in R&D to develop cost-effective and efficient green cement technologies.
  • Public-private partnerships: Collaborations between government bodies and private companies can facilitate knowledge sharing and resource pooling.
  • Education and training: Conducting awareness campaigns and training programs for stakeholders in the construction industry.
  • Standardisation of regulations: Establishing uniform standards and certifications for green cement to streamline adoption.

Conclusion
The transition to green cement represents a transformative opportunity for India’s cement industry to align economic growth with environmental responsibility. As the country continues to urbanise and expand its infrastructure, the adoption of sustainable practices becomes not just desirable, but essential. Green cement offers a viable pathway to reduce the carbon intensity of construction through innovative technologies, alternative raw materials, and energy-efficient production processes. With the support of robust policy frameworks like the National Green Hydrogen Mission and Perform, Achieve and Trade (PAT) Scheme, the industry is well-positioned to meet the dual goals of reducing greenhouse gas emissions and maintaining its critical role in national development.
However, realising the full potential of green cement requires a coordinated, multi-stakeholder approach involving government, industry, academia, and financial institutions. Addressing cost barriers, improving supply chain logistics, and raising awareness among end-users are essential for scaling adoption. As India targets net-zero emissions by 2070, with interim renewable energy and efficiency milestones, green cement will play a pivotal role in the nation’s decarbonisation journey. By investing in innovation, standardisation, and education, India can emerge as a global leader in sustainable construction and set a powerful precedent for other developing economies facing similar climate and infrastructure challenges.

– Kanika Mathur

Concrete

Adani Cement to Deploy World’s First Commercial RDH System

Adani Cement and Coolbrook partner to pilot RDH tech for low-carbon cement.

Published

on

By

Shares
Adani Cement and Coolbrook have announced a landmark agreement to install the world’s first commercial RotoDynamic Heater (RDH) system at Adani’s Boyareddypalli Integrated Cement Plant in Andhra Pradesh. The initiative aims to sharply reduce carbon emissions associated with cement production.
This marks the first industrial-scale deployment of Coolbrook’s RDH technology, which will decarbonise the calcination phase — the most fossil fuel-intensive stage of cement manufacturing. The RDH system will generate clean, electrified heat to dry and improve the efficiency of alternative fuels, reducing dependence on conventional fossil sources.
According to Adani, the installation is expected to eliminate around 60,000 tonnes of carbon emissions annually, with the potential to scale up tenfold as the technology is expanded. The system will be powered entirely by renewable energy sourced from Adani Cement’s own portfolio, demonstrating the feasibility of producing industrial heat without emissions and strengthening India’s position as a hub for clean cement technologies.
The partnership also includes a roadmap to deploy RotoDynamic Technology across additional Adani Cement sites, with at least five more projects planned over the next two years. The first-generation RDH will provide hot gases at approximately 1000°C, enabling more efficient use of alternative fuels.
Adani Cement’s wider sustainability strategy targets raising the share of alternative fuels and resources to 30 per cent and increasing green power use to 60 per cent by FY28. The RDH deployment supports the company’s Science Based Targets initiative (SBTi)-validated commitment to achieve net-zero emissions by 2050.  

Continue Reading

Concrete

Birla Corporation Q2 EBITDA Surges 71%, Net Profit at Rs 90 Crore

Stronger margins and premium cement sales boost quarterly performance.

Published

on

By

Shares
Birla Corporation Limited reported a consolidated EBITDA of Rs 3320 million for the September quarter of FY26, a 71 per cent increase over the same period last year, driven by improved profitability in both its Cement and Jute divisions. The company posted a consolidated net profit of Rs 900 million, reversing a loss of Rs 250 million in the corresponding quarter last year.
Consolidated revenue stood at Rs 22330 million, marking a 13 per cent year-on-year growth as cement sales volumes rose 7 per cent to 4.2 million tonnes. Despite subdued cement demand, weak pricing, and rainfall disruptions, Birla Jute Mills staged a turnaround during the quarter.
Premium cement continued to drive performance, accounting for 60 per cent of total trade sales. The flagship brand Perfect Plus recorded 20 per cent growth, while Unique Plus rose 28 per cent year-on-year. Sales through the trade channel reached 79 per cent, up from 71 per cent a year earlier, while blended cement sales grew 14 per cent, forming 89 per cent of total cement sales. Madhya Pradesh and Rajasthan remained key growth markets with 7–11 per cent volume gains.
EBITDA per tonne improved 54 per cent to Rs 712, with operating margins expanding to 14.7 per cent from 9.8 per cent last year, supported by efficiency gains and cost reduction measures.
Sandip Ghose, Managing Director and CEO, said, “The Company was able to overcome headwinds from multiple directions to deliver a resilient performance, which boosts confidence in the robustness of our strategies.”
The company expects cement demand to strengthen in the December quarter, supported by government infrastructure spending and rural housing demand. Growth is anticipated mainly from northern and western India, while southern and eastern regions are expected to face continued supply pressures.

Continue Reading

Concrete

Ambuja Cements Delivers Strong Q2 FY26 Performance Driven by R&D and Efficiency

Company raises FY28 capacity target to 155 MTPA with focus on cost optimisation and AI integration

Published

on

By

Shares
Ambuja Cements, part of the diversified Adani Portfolio and the world’s ninth-largest building materials solutions company, has reported a robust performance for Q2 FY26. The company’s strong results were driven by market share gains, R&D-led premium cement products, and continued efficiency improvements.
Vinod Bahety, Whole-Time Director and CEO, Ambuja Cements, said, “This quarter has been noteworthy for the cement industry. Despite headwinds from prolonged monsoons, the sector stands to benefit from several favourable developments, including GST 2.0 reforms, the Carbon Credit Trading Scheme (CCTS), and the withdrawal of coal cess. Our capacity expansion is well timed to capitalise on this positive momentum.”
Ambuja has increased its FY28 capacity target by 15 MTPA — from 140 MTPA to 155 MTPA — through debottlenecking initiatives that will come at a lower capital expenditure of USD 48 per metric tonne. The company also plans to enhance utilisation of its existing 107 MTPA capacity by 3 per cent through logistics infrastructure improvements.
To strengthen its product mix, Ambuja will install 13 blenders across its plants over the next 12 months to optimise production and increase the share of premium cement, improving realisations. These operational enhancements have already contributed to a 5 per cent reduction in cost of sales year-on-year, resulting in an EBITDA of Rs 1,060 per metric tonne and a PMT EBITDA of approximately Rs 1,189.
Looking ahead, the company remains optimistic about achieving double-digit revenue growth and maintaining four-digit PMT EBITDA through FY26. Ambuja aims to reduce total cost to Rs 4,000 per metric tonne by the end of FY26 and further by 5 per cent annually to reach Rs 3,650 per metric tonne by FY28.
Bahety added, “Our Cement Intelligent Network Operations Centre (CiNOC) will bring a paradigm shift to our business operations. Artificial Intelligence will run deep within our enterprise, driving efficiency, productivity, and enhanced stakeholder engagement across the value chain.”

Continue Reading

Trending News