Connect with us

Concrete

The Science and Application of Grinding Aids

Published

on

Shares

Dr SB Hegde discusses the importance of grinding aids as essential chemical additives that enhance cement grinding efficiency, reduce energy consumption and improve overall cement quality in the concluding part of his article.

Grinding aids represent a critical segment of the cement additives market, driven by their ability to enhance grinding efficiency, reduce energy consumption, and improve cement quality. The market dynamics of grinding aids vary significantly across regions, influenced by economic growth, cement production capacities and regulatory environments.

Global market size and growth projections
The global grinding aids market was valued at approximately US $ 1.2 billion in 2023 and is expected to grow at a CAGR of 5.5 per cent from 2023 to 2030, reaching nearly US $ 1.8 billion by 2030.
This growth is fueled by the increasing focus on energy efficiency and sustainable cement production practices worldwide.
Rapid urbanisation and infrastructure development, especially in emerging economies, are major growth drivers. Cement producers are increasingly adopting grinding aids to address rising energy costs, reduce carbon footprints, and improve production efficiencies. For instance, grinding aids have been shown to lower energy consumption by up to 25 per cent, making them a cost-effective solution for plants facing energy price volatility.

Regional trends: Developed vs. developing markets

  • Developed markets: Europe and North America represent mature markets for grinding aids. Europe, driven by stringent environmental regulations such as the EU Emissions Trading System (EU ETS), has witnessed a steady rise in the adoption of low-VOC and eco-friendly grinding aids. Leading players in these markets emphasise sustainability and compliance with regulatory frameworks, contributing to steady demand.
    In North America, the focus is on productivity enhancements in large-scale cement plants, with grinding aids used to achieve finer cement grades and support blended cement production.
  • Developing markets: Emerging economies in Asia-Pacific, the Middle East, and Africa exhibit the fastest growth in grinding aid adoption. The Asia-Pacific region accounted for over 40 per cent of global grinding aid consumption in 2023, with countries like India, China, and Vietnam leading the way. The rapid urbanisation, rising construction activity, and increasing cement production capacities in these regions are
    driving demand.

In Africa, grinding aids are gaining traction as manufacturers focus on optimising production costs in an environment of fluctuating raw material and energy prices.

Market size and adoption rate in India
India, the world’s second-largest cement producer, offers a significant growth opportunity for grinding aids. In 2023, the grinding aids market in India was valued at US$ 150 million, with a projected growth rate of over seven per cent CAGR through 2030. The adoption rate remains relatively low at smaller plants, which prioritise cost-saving over efficiency gains. However, leading manufacturers and integrated cement plants are increasingly embracing grinding aids, particularly for blended cement production.
Blended cements, such as Portland Pozzolana Cement (PPC) and Portland Slag Cement (PSC), account for more than 70 per cent of the Indian cement market. Grinding aids tailored for fly ash and slag-blended cements are in high demand, with some products delivering up to a 15 per cent increase in mill throughput and improved early strength development.

Emerging trends

  • Eco-friendly formulations: The growing demand for sustainable grinding aids has prompted companies to develop low-VOC and biodegradable alternatives.
  • Customised solutions: Grinding aid formulations are increasingly tailored to address specific raw material challenges and production processes, such as VRMs or high-SCM cement blends.
  • Digitalisation: Smart dosing systems integrated with real-time mill monitoring are enabling optimised grinding aid usage, ensuring consistent performance across diverse production conditions.

Bridging the Trust Gap
For cement plant operators, the quality and performance of grinding aids often appear as a ‘black box.’ The lack of transparency in the formulation and quality checks of these additives has historically limited trust and widespread adoption. Grinding aid manufacturers must address this issue by fostering transparency and providing detailed insights into the testing and validation of their products. This would not only instill confidence but also strengthen collaboration with cement companies.
Grinding aid producers should provide robust documentation outlining the physical and chemical characteristics of their formulations, supported by consistent performance data from laboratory tests, industrial-scale trials, and third-party validations. This transparency is essential to demystify grinding aids’ performance and demonstrate their effectiveness across diverse operational conditions.

Emerging innovations in grinding aid chemistry
The path forward for grinding aid manufacturers lies in innovation. Recent research highlights the potential of hybrid formulations combining traditional amines and glycols with advanced polymeric additives like polycarboxylate ethers (PCEs). These hybrid products can address specific challenges such as improving grindability in blended cements containing fly ash or slag, where traditional additives often underperform. Nano-engineering of grinding aids, incorporating nanoparticles for optimised dispersion and enhanced hydration kinetics, represents another promising avenue.

Leveraging AI for optimisation

The integration of artificial intelligence (AI) and machine learning tools into grinding aid application systems is reshaping the cement industry. AI-driven systems enable real-time optimisation of grinding aid dosages by analysing mill performance data, such as power consumption, throughput, and particle size distribution. For example, a cement plant in Europe reported a 15 per cent reduction in specific energy consumption and a 10 per cent
increase in mill throughput using AI-optimised dosing systems. This innovation reduces operational variability and improves the predictability of grinding aid performance.

Expectations from grinding aid producers
The cement industry demands more than just products; it seeks partnerships with grinding aid manufacturers. Key expectations include:
1. Customised formulations: Tailored products designed for specific raw materials, clinker compositions, and mill configurations to maximise efficiency and performance.
2. Eco-friendly additives: Grinding aids with low volatile organic compound (VOC) emissions and biodegradable ingredients that align with the industry’s sustainability goals.
3. Comprehensive technical support: On-site training and technical services to help plant operators understand grinding aid chemistry, application techniques and performance optimisation strategies.
4. Advanced quality control systems: Transparent testing protocols, including real-time quality assurance of grinding aids delivered to cement plants. Regular reporting of performance consistency through defined KPIs like grindability index and Blaine fineness is essential.

Role of cement companies in promoting grinding aid usage
Cement producers must take an active role in promoting grinding aid adoption. Sharing success stories of energy savings, improved mill performance, and enhanced cement quality can encourage industry-wide adoption. For example, an Indian cement manufacturer recently documented a 20 per cent improvement in 28-day compressive strength and a 10 per cent reduction in energy consumption with glycol-based additives, driving interest among peers.
Moreover, collaborative initiatives between cement producers and grinding aid manufacturers, such as joint research programs and knowledge-sharing forums, could lead to significant advancements in grinding technology. Organisations like the Cement Manufacturers’ Association of India and the World Cement Association can facilitate these partnerships.

Conclusion
Grinding aids play a pivotal role in modern cement manufacturing, offering significant advantages in energy efficiency, mill productivity and cement quality. Despite their transformative potential, adoption remains inconsistent due to challenges like raw material variability, operational concerns and limited trust in product formulations. Transparency and collaboration between grinding aid producers and cement manufacturers are critical to addressing these issues and fostering broader acceptance.
Innovations in grinding aid chemistry, including hybrid formulations and nano-engineered additives, have unlocked new possibilities for enhancing grindability and hydration performance. Meanwhile, advancements in artificial intelligence and data analytics have opened avenues for real-time optimisation, ensuring precise dosing and measurable cost savings. These developments underscore the evolving synergy between technology and grinding aid applications.
Globally, the grinding aid market is poised for growth, with developed regions leading adoption and emerging economies like India offering immense potential driven by infrastructure demands. However, tapping into these opportunities requires grinding aid producers to align with industry expectations. Cement manufacturers expect customised solutions, eco-friendly formulations, technical support and transparent quality assurance processes to build trust and confidence.
The path forward demands a collaborative approach. Grinding aid producers must continue investing in research and innovation while actively engaging with the cement industry to educate stakeholders and demonstrate measurable benefits. Concurrently, the cement industry must champion adoption through case studies, knowledge sharing, and regulatory support. Together, these efforts will ensure grinding aids fulfill their promise of enabling a more efficient, sustainable, and resilient cement manufacturing sector.

References
1. Gao, J., Zhang, S., Wang, X., & Ma, B. (2011). “Effect of organic grinding aids on cement properties and the analysis via liquid chromatography-mass spectrometry.” Construction and Building Materials, 25(8), 3600–3605.
2. Amritphale, S. S., Patel, M., & Singh, R. (2017). “Grinding aids: A study on their mechanism of action in cement grinding processes.” Indian Cement Review.
3. Cembureau – The European Cement Association. “Cement grinding optimisation through grinding aids.” Industry Report, 2023.
4. Flatt, R. J., & Schober, I. (2012). “Superplasticisers and the rheology of concrete.” International Journal of Cement Chemistry, 64(4), 91–109.
5. Mejeoumov, G. G. (2007). “Improved cement quality and grinding efficiency by means of closed mill circuit modeling.” PhD Dissertation, Texas A&M University.
6. Global Cement. “Advances in grinding aids: Market trends and new technologies.” Published October 2024.
7. Statista. “Global grinding aids market size and forecast (2023-2030).” Published March 2024.
8. Pal, B. K., & Rath, P. C. (2020). “Influence of grinding aids on particle size distribution, strength, and hydration of cement.” Journal of Materials Science and Applications, 45(2), 234–246.
9. Indian Cement Review. “Emerging market scope of grinding aids in India.” Published July 2023.
10. Zhang, H., Li, X., & Zhao, Y. (2022). “The role of grinding aids in improving cement hydration kinetics.” Journal of Advanced Materials Science, 17(6), 527–540.
11. Sika AG. “Technical Report on Polycarboxylate Ether (PCE) based grinding aids.” Published 2022.
12. Cement and Concrete Research. “AI-driven optimisation in cement grinding: Case studies and industrial applications.” Volume 152, 2023.
13. Taylor, H. F. W. (1997). Cement Chemistry (2nd Edition). Thomas Telford Publishing.
14. Indian Bureau of Mines (IBM). “Market trends and challenges in cement manufacturing.” Annual Report, 2024.
15. World Cement Association. “Sustainability in grinding aids and cement additives.” Published 2024.

About the author:
Dr SB Hegde, a global cement industry leader with over 30 years of experience, is a Professor at Jain College of Engineering, India, and a Visiting Professor at Pennsylvania State University, USA. Recipient of the ‘Global Visionary’ award, Dr Hegde advises India’s think tank CSTEP on hydrogen usage in cement and consults for major cement companies. He also serves on expert panels of key industry bodies and journals globally.

Concrete

Nuvoco Vistas Reports Record Q2 EBITDA, Expands Capacity to 35 MTPA

Cement Major Nuvoco Posts Rs 3.71 bn EBITDA in Q2 FY26

Published

on

By

Shares

Nuvoco Vistas Corp. Ltd., one of India’s leading building materials companies, has reported its highest-ever second-quarter consolidated EBITDA of Rs 3.71 billion for Q2 FY26, reflecting an 8% year-on-year revenue growth to Rs 24.58 billion. Cement sales volume stood at 4.3 MMT during the quarter, driven by robust demand and a rising share of premium products, which reached an all-time high of 44%.

The company continued its deleveraging journey, reducing like-to-like net debt by Rs 10.09 billion year-on-year to Rs 34.92 billion. Commenting on the performance, Jayakumar Krishnaswamy, Managing Director, said, “Despite macro headwinds, disciplined execution and focus on premiumisation helped us achieve record performance. We remain confident in our structural growth trajectory.”

Nuvoco’s capacity expansion plans remain on track, with refurbishment of the Vadraj Cement facility progressing towards operationalisation by Q3 FY27. In addition, the company’s 4 MTPA phased expansion in eastern India, expected between December 2025 and March 2027, will raise its total cement capacity to 35 MTPA by FY27.

Reinforcing its sustainability credentials, Nuvoco continues to lead the sector with one of the lowest carbon emission intensities at 453.8 kg CO? per tonne of cementitious material.

Continue Reading

Concrete

Jindal Stainless to Invest $150 Mn in Odisha Metal Recovery Plant

New Jajpur facility to double metal recovery capacity and cut emissions

Published

on

By

Shares

Jindal Stainless Limited has announced an investment of $150 million to build and operate a new wet milling plant in Jajpur, Odisha, aimed at doubling its capacity to recover metal from industrial waste. The project is being developed in partnership with Harsco Environmental under a 15-year agreement.

The facility will enable the recovery of valuable metals from slag and other waste materials, significantly improving resource efficiency and reducing environmental impact. The initiative aligns with Jindal Stainless’s sustainability roadmap, which focuses on circular economy practices and low-carbon operations.

In financial year 2025, the company reduced its carbon footprint by about 14 per cent through key decarbonisation initiatives, including commissioning India’s first green hydrogen plant for stainless steel production and setting up the country’s largest captive solar energy plant within a single industrial campus in Odisha.

Shares of Jindal Stainless rose 1.8 per cent to Rs 789.4 per share following the announcement, extending a 5 per cent gain over the past month.

Continue Reading

Concrete

Vedanta gets CCI Approval for Rs 17,000 MnJaiprakash buyout

Acquisition marks Vedanta’s expansion into cement, real estate, and infra

Published

on

By

Shares

Vedanta Limited has received approval from the Competition Commission of India (CCI) to acquire Jaiprakash Associates Limited (JAL) for approximately Rs 17,000 million under the Insolvency and Bankruptcy Code (IBC) process. The move marks Vedanta’s strategic expansion beyond its core mining and metals portfolio into cement, real estate, and infrastructure sectors.

Once the flagship of the Jaypee Group, JAL has faced severe financial distress with creditors’ claims exceeding Rs 59,000 million. Vedanta emerged as the preferred bidder in a competitive auction, outbidding the Adani Group with an overall offer of Rs 17,000 million, equivalent to Rs 12,505 million in net present value terms. The payment structure involves an upfront settlement of around Rs 3,800 million, followed by annual instalments of Rs 2,500–3,000 million over five years.

The National Asset Reconstruction Company Limited (NARCL), which acquired the group’s stressed loans from a State Bank of India-led consortium, now leads the creditor committee. Lenders are expected to take a haircut of around 71 per cent based on Vedanta’s offer. Despite approvals for other bidders, Vedanta’s proposal stood out as the most viable resolution plan, paving the way for the company’s diversification into new business verticals.

Continue Reading

Trending News