Connect with us

Concrete

The Science and Application of Grinding Aids

Published

on

Shares

Dr SB Hegde discusses the importance of grinding aids as essential chemical additives that enhance cement grinding efficiency, reduce energy consumption and improve overall cement quality in the concluding part of his article.

Grinding aids represent a critical segment of the cement additives market, driven by their ability to enhance grinding efficiency, reduce energy consumption, and improve cement quality. The market dynamics of grinding aids vary significantly across regions, influenced by economic growth, cement production capacities and regulatory environments.

Global market size and growth projections
The global grinding aids market was valued at approximately US $ 1.2 billion in 2023 and is expected to grow at a CAGR of 5.5 per cent from 2023 to 2030, reaching nearly US $ 1.8 billion by 2030.
This growth is fueled by the increasing focus on energy efficiency and sustainable cement production practices worldwide.
Rapid urbanisation and infrastructure development, especially in emerging economies, are major growth drivers. Cement producers are increasingly adopting grinding aids to address rising energy costs, reduce carbon footprints, and improve production efficiencies. For instance, grinding aids have been shown to lower energy consumption by up to 25 per cent, making them a cost-effective solution for plants facing energy price volatility.

Regional trends: Developed vs. developing markets

  • Developed markets: Europe and North America represent mature markets for grinding aids. Europe, driven by stringent environmental regulations such as the EU Emissions Trading System (EU ETS), has witnessed a steady rise in the adoption of low-VOC and eco-friendly grinding aids. Leading players in these markets emphasise sustainability and compliance with regulatory frameworks, contributing to steady demand.
    In North America, the focus is on productivity enhancements in large-scale cement plants, with grinding aids used to achieve finer cement grades and support blended cement production.
  • Developing markets: Emerging economies in Asia-Pacific, the Middle East, and Africa exhibit the fastest growth in grinding aid adoption. The Asia-Pacific region accounted for over 40 per cent of global grinding aid consumption in 2023, with countries like India, China, and Vietnam leading the way. The rapid urbanisation, rising construction activity, and increasing cement production capacities in these regions are
    driving demand.

In Africa, grinding aids are gaining traction as manufacturers focus on optimising production costs in an environment of fluctuating raw material and energy prices.

Market size and adoption rate in India
India, the world’s second-largest cement producer, offers a significant growth opportunity for grinding aids. In 2023, the grinding aids market in India was valued at US$ 150 million, with a projected growth rate of over seven per cent CAGR through 2030. The adoption rate remains relatively low at smaller plants, which prioritise cost-saving over efficiency gains. However, leading manufacturers and integrated cement plants are increasingly embracing grinding aids, particularly for blended cement production.
Blended cements, such as Portland Pozzolana Cement (PPC) and Portland Slag Cement (PSC), account for more than 70 per cent of the Indian cement market. Grinding aids tailored for fly ash and slag-blended cements are in high demand, with some products delivering up to a 15 per cent increase in mill throughput and improved early strength development.

Emerging trends

  • Eco-friendly formulations: The growing demand for sustainable grinding aids has prompted companies to develop low-VOC and biodegradable alternatives.
  • Customised solutions: Grinding aid formulations are increasingly tailored to address specific raw material challenges and production processes, such as VRMs or high-SCM cement blends.
  • Digitalisation: Smart dosing systems integrated with real-time mill monitoring are enabling optimised grinding aid usage, ensuring consistent performance across diverse production conditions.

Bridging the Trust Gap
For cement plant operators, the quality and performance of grinding aids often appear as a ‘black box.’ The lack of transparency in the formulation and quality checks of these additives has historically limited trust and widespread adoption. Grinding aid manufacturers must address this issue by fostering transparency and providing detailed insights into the testing and validation of their products. This would not only instill confidence but also strengthen collaboration with cement companies.
Grinding aid producers should provide robust documentation outlining the physical and chemical characteristics of their formulations, supported by consistent performance data from laboratory tests, industrial-scale trials, and third-party validations. This transparency is essential to demystify grinding aids’ performance and demonstrate their effectiveness across diverse operational conditions.

Emerging innovations in grinding aid chemistry
The path forward for grinding aid manufacturers lies in innovation. Recent research highlights the potential of hybrid formulations combining traditional amines and glycols with advanced polymeric additives like polycarboxylate ethers (PCEs). These hybrid products can address specific challenges such as improving grindability in blended cements containing fly ash or slag, where traditional additives often underperform. Nano-engineering of grinding aids, incorporating nanoparticles for optimised dispersion and enhanced hydration kinetics, represents another promising avenue.

Leveraging AI for optimisation

The integration of artificial intelligence (AI) and machine learning tools into grinding aid application systems is reshaping the cement industry. AI-driven systems enable real-time optimisation of grinding aid dosages by analysing mill performance data, such as power consumption, throughput, and particle size distribution. For example, a cement plant in Europe reported a 15 per cent reduction in specific energy consumption and a 10 per cent
increase in mill throughput using AI-optimised dosing systems. This innovation reduces operational variability and improves the predictability of grinding aid performance.

Expectations from grinding aid producers
The cement industry demands more than just products; it seeks partnerships with grinding aid manufacturers. Key expectations include:
1. Customised formulations: Tailored products designed for specific raw materials, clinker compositions, and mill configurations to maximise efficiency and performance.
2. Eco-friendly additives: Grinding aids with low volatile organic compound (VOC) emissions and biodegradable ingredients that align with the industry’s sustainability goals.
3. Comprehensive technical support: On-site training and technical services to help plant operators understand grinding aid chemistry, application techniques and performance optimisation strategies.
4. Advanced quality control systems: Transparent testing protocols, including real-time quality assurance of grinding aids delivered to cement plants. Regular reporting of performance consistency through defined KPIs like grindability index and Blaine fineness is essential.

Role of cement companies in promoting grinding aid usage
Cement producers must take an active role in promoting grinding aid adoption. Sharing success stories of energy savings, improved mill performance, and enhanced cement quality can encourage industry-wide adoption. For example, an Indian cement manufacturer recently documented a 20 per cent improvement in 28-day compressive strength and a 10 per cent reduction in energy consumption with glycol-based additives, driving interest among peers.
Moreover, collaborative initiatives between cement producers and grinding aid manufacturers, such as joint research programs and knowledge-sharing forums, could lead to significant advancements in grinding technology. Organisations like the Cement Manufacturers’ Association of India and the World Cement Association can facilitate these partnerships.

Conclusion
Grinding aids play a pivotal role in modern cement manufacturing, offering significant advantages in energy efficiency, mill productivity and cement quality. Despite their transformative potential, adoption remains inconsistent due to challenges like raw material variability, operational concerns and limited trust in product formulations. Transparency and collaboration between grinding aid producers and cement manufacturers are critical to addressing these issues and fostering broader acceptance.
Innovations in grinding aid chemistry, including hybrid formulations and nano-engineered additives, have unlocked new possibilities for enhancing grindability and hydration performance. Meanwhile, advancements in artificial intelligence and data analytics have opened avenues for real-time optimisation, ensuring precise dosing and measurable cost savings. These developments underscore the evolving synergy between technology and grinding aid applications.
Globally, the grinding aid market is poised for growth, with developed regions leading adoption and emerging economies like India offering immense potential driven by infrastructure demands. However, tapping into these opportunities requires grinding aid producers to align with industry expectations. Cement manufacturers expect customised solutions, eco-friendly formulations, technical support and transparent quality assurance processes to build trust and confidence.
The path forward demands a collaborative approach. Grinding aid producers must continue investing in research and innovation while actively engaging with the cement industry to educate stakeholders and demonstrate measurable benefits. Concurrently, the cement industry must champion adoption through case studies, knowledge sharing, and regulatory support. Together, these efforts will ensure grinding aids fulfill their promise of enabling a more efficient, sustainable, and resilient cement manufacturing sector.

References
1. Gao, J., Zhang, S., Wang, X., & Ma, B. (2011). “Effect of organic grinding aids on cement properties and the analysis via liquid chromatography-mass spectrometry.” Construction and Building Materials, 25(8), 3600–3605.
2. Amritphale, S. S., Patel, M., & Singh, R. (2017). “Grinding aids: A study on their mechanism of action in cement grinding processes.” Indian Cement Review.
3. Cembureau – The European Cement Association. “Cement grinding optimisation through grinding aids.” Industry Report, 2023.
4. Flatt, R. J., & Schober, I. (2012). “Superplasticisers and the rheology of concrete.” International Journal of Cement Chemistry, 64(4), 91–109.
5. Mejeoumov, G. G. (2007). “Improved cement quality and grinding efficiency by means of closed mill circuit modeling.” PhD Dissertation, Texas A&M University.
6. Global Cement. “Advances in grinding aids: Market trends and new technologies.” Published October 2024.
7. Statista. “Global grinding aids market size and forecast (2023-2030).” Published March 2024.
8. Pal, B. K., & Rath, P. C. (2020). “Influence of grinding aids on particle size distribution, strength, and hydration of cement.” Journal of Materials Science and Applications, 45(2), 234–246.
9. Indian Cement Review. “Emerging market scope of grinding aids in India.” Published July 2023.
10. Zhang, H., Li, X., & Zhao, Y. (2022). “The role of grinding aids in improving cement hydration kinetics.” Journal of Advanced Materials Science, 17(6), 527–540.
11. Sika AG. “Technical Report on Polycarboxylate Ether (PCE) based grinding aids.” Published 2022.
12. Cement and Concrete Research. “AI-driven optimisation in cement grinding: Case studies and industrial applications.” Volume 152, 2023.
13. Taylor, H. F. W. (1997). Cement Chemistry (2nd Edition). Thomas Telford Publishing.
14. Indian Bureau of Mines (IBM). “Market trends and challenges in cement manufacturing.” Annual Report, 2024.
15. World Cement Association. “Sustainability in grinding aids and cement additives.” Published 2024.

About the author:
Dr SB Hegde, a global cement industry leader with over 30 years of experience, is a Professor at Jain College of Engineering, India, and a Visiting Professor at Pennsylvania State University, USA. Recipient of the ‘Global Visionary’ award, Dr Hegde advises India’s think tank CSTEP on hydrogen usage in cement and consults for major cement companies. He also serves on expert panels of key industry bodies and journals globally.

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares
The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares
JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares

Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News