Concrete
Importance of TSR
Published
7 months agoon
By
admin
Procyon Mukherjee discusses the importance of the thermal substitution rate in the use of alternative fuels in the first part of this two-part series.
It was 22nd October 2019, and we were in Wuhan, visiting the world’s largest kiln that was being installed with the design-TSR of 60 per cent, which meant from the inception the system would be ready to take in higher quantity of RDF, largely from the municipal wastes generated at Wuhan. The overall schema included several co-processing units near Wuhan and then the eventual logistics of moving them through barges on the Yangtse river and then through pipelines into the different sections of the kiln and the pre-heater. We were quite astonished to see that it was the municipality of Wuhan who came forward with the entire scheme including logistics that helped the setting up of the plant – essentially a means for incineration of the entire municipal waste of Wuhan.
The rest of the world may not have such a denouement, rather a step-by-step approach of increasing the TSR, with more and more usage of alternate fuels. Thus, in most cases it is an incremental approach, the investments included. It is worthwhile to look at the journey of alternate fuel usage in cement kilns across the world over the last three decades and what are some of the critical investment pathways for increasing TSR.
The first major use of alternative fuels in the cement manufacturing industry emerged during the mid-1980s. The primary goal in substituting fossil fuels was to enable the industry to remain economically competitive, as fuel consumption accounts for almost one-third of the cost of producing clinker. Any positive impact on the environment was considered an added benefit. Since then, there has been increasing sensitivity to the environmental impact of human and industrial activities. Beyond the cost-cutting benefits of alternative fuels, use of these fuels can contribute greatly to the environmentally sound disposal of waste and to the mitigation of greenhouse-gas emissions (GHG).
Therefore, key cement players started to consider alternative fuels as a lever to improve their contribution to sustainable development and as a key component of corporate social responsibility.
The data in the bracket is the current number for TSR. The obvious case in point is the stratospheric increase in TSR rates in Poland. This needs some discussion. The case study on Poland throws some pointers as to how the journey from zero to 88 per cent has been achieved. The notable steps have been:
1. The willingness of Polish cement companies to reduce their operating costs by quickly replicating the alternative fuel experience of international cement groups
2. The enforcement of Polish waste regulations in order to conform to relevant European
Union directives, namely the Waste Framework Directive, the Waste Incineration Directive and the Landfill Directive.
The second one is one of the fundamental reasons to drive the use of alternate fuel. The journey had its humble beginnings with a small state tax imposed on land fill waste (which was collected from the same people who produced the waste) and then the increase of this tax over time, with the transfer of responsibility of waste collection to the land fill operators. Parallelly the ‘extended producer responsibility’ sparked off the implementation of the first waste shredding line to produce refuse-derived fuel (RDF).
In 2005, Germany adopted a ban on the landfilling of recyclable and organic waste, leading to overproduction of RDF. Poland’s shift toward alternative fuel development based on RDF was thus supported by importation of the fuel from Germany for five years, before Germany increased its own waste burning capacity. At that point, the alternative fuel substitution rate in Poland reached 20 percent. In 2008, the state tax was increased sharply, climbing from €4 per tonne in 2007 to about €17 per tonne, with a further doubling announced within the next 10 years. The enforcement of this tax for municipal waste incited waste management companies to invest in alternative solutions.
At that point, shredding line operators were sourcing waste from the industrial sector (obtaining good-quality waste for a low gate fee) as well as from the municipal waste sector, with large cities being the main providers. The extension of sourcing to include municipal waste resulted in a degree of downgrading of RDF quality, but the cement sector continued the effort and pushed the substitution rate to 40 per cent in 2010.
Once the capacity of RDF production lines reached an equilibrium with the alternative fuel capacity of cement plants, the cement companies were able to pressure RDF producers to further improve the fuel quality. To face this new demand, RDF producers had to innovate, improving the quality of the RDF significantly through better sorting and drying sequences (thermal or biological). In parallel, the cement plants developed new tools to improve drying, such as by installing thermal dryers that used the waste heat from the kilns. A new increase to the state tax then put more waste on the market—and at a better price—confirming the trend toward alternative fuel use.
But the crucial area of investment remained how to arrest the pitfalls of high RDF usage in the kilns as there were issues around chlorine, kiln operational stability, enabling the efficient use of diverse and often challenging fuel types, integration of the system with usage of multiple fuels including diverse alternate fuels and monitoring and control. It is in this regard that several specific investments had to be targeted. The lead in this was taken by Germany and followed by all others to see how increase in thermal substitution rates did not come in the way of either impacting the efficiencies or the environment and efforts were directed to create not only a balance but a way to get to 100 per cent of alternate fuel usage, virtually paving the way for 100 per cent TSR.
Some of the most commonly used alternative fuels in the cement industry are biomass, industrial and domestic waste materials, scrap tires, and sewage sludge. The high temperatures, long residence times, and alkaline environment in the cement kiln can prevent the formation of hazardous volatile compounds, making it a suitable option for co-processing waste materials as alternative fuels during cement production. Although the substitution of fossil fuels such as coal and pet coke with alternative fuels can potentially reduce total CO2 emissions from the cement industry, the reduction potentials are often marginal (in the range of 1- 5 per cent for most cases and up to 18 per cent of current CO2 emissions in a few cases) and depend on the source of biogenic emissions. Moreover, due to higher concentrations of sulphur, nitrogen, chlorine, heavy metals, or other volatile matter in some alternative fuels, co-processing can increase emissions of non-CO2 air pollutants of concern in some cases. Thus, an eye on not increasing the emissions (not just CO2 but also SOX and NOX) became a priority. This required investments over time as the RDF usage increased.
Let us see some of these investments in details, like Chlorine By-Pass, Rotating Hot Disc, ID Fan Modification, ESP Fan Modification, etc would be needed the moment the TSR rates would be approaching plus 30 per cent:
1. Chlorine by-pass: This investment is directed at mitigating and protecting a number of
things like:
Managing chlorine build-up
– Alternative fuels like waste-derived fuels often contain high levels of chlorine. This can lead to an accumulation of alkali chlorides in the kiln system.
– Chlorine build-up can cause operational problems, such as the formation of buildups or rings in the kiln and preheater systems, disrupting the material flow and reducing efficiency.
Improving kiln operation stability: High chlorine content can lead to corrosion and fouling of equipment. By removing excess chlorine, the system operates more stably and with fewer maintenance interruptions.
Protecting product quality: Excess chlorine can impact the clinker quality, leading to undesirable properties in the cement. The bypass system helps maintain consistent and high-quality clinker production.
Facilitating use of diverse fuels: Many alternative fuels, such as municipal solid waste, industrial waste, or tires, are economical but contain high chlorine levels. The bypass system enables cement plants to use these fuels without compromising efficiency
or quality.
Reducing environmental impact: Chlorine in the kiln system can lead to the formation of dioxins and furans, which are harmful pollutants. By extracting chlorine from the system, the bypass reduces the risk of these emissions.
How the system works:
The chlorine bypass system extracts a portion of the kiln gas from a specific point (often the kiln inlet) where the alkali chlorides are in a gaseous form. These gases are cooled rapidly to condense and separate the chlorides, which are then collected and disposed of appropriately.
There are eight components of the system:
Gas extraction system
- Function: Extracts a portion of kiln gases from a strategic location, typically near the kiln inlet where volatile alkali chlorides are in gaseous form.
Key components:
– Gas ducts with high-temperature resistance.
– Dampers to control the volume of extracted gas.
Rapid cooling system
- Function: Quickly cools the extracted hot gases to condense alkali chlorides and other volatiles, preventing them from recirculating into the kiln system.
- Key components:
– Water sprays or air quenching systems for
rapid cooling.
– Heat exchangers, if heat recovery is integrated.
Cyclones or bag filters
- Function: Separates condensed alkali chlorides and dust from the cooled gas stream.
- Key components:
– High-efficiency cyclones for coarse particle separation.
– Bag filters or electrostatic precipitators for fine particle removal.
Disposal system for collected byproducts
- Function: Safely manages and disposes of extracted chlorides and dust.
Key components:
– Conveyors or pneumatic transport systems.
– Silos or containment units for storage before disposal.
Bypass gas cooling and conditioning system
- Function: Further conditions the bypass gas before reintegration into the system or venting.
- Key components:
– Cooling towers or gas conditioning towers.
– Water injection systems for temperature control.
Control and automation system
- Function: Monitors and optimises the bypass system to ensure it operates efficiently and safely.
- Key components:
– Sensors for temperature, pressure, and chlorine content.
– Programmable logic controllers (PLCs) for real-time adjustments.
Heat recovery system (optional)
- Function: Captures waste heat from the bypass gases for use in other processes, improving energy efficiency.
- Key components:
– Heat exchangers.
– Steam generators or preheaters.
Integration with main kiln system
- Function: Ensures that the bypass system operates in harmony with the kiln process without disrupting clinker production or fuel efficiency.
- Key components:
– Ducts and valves for gas reintegration or venting.
– Interfaces with kiln control systems.
2. Combustion chamber hot disc
The installation of a combustion chamber (hot disc) in cement kilns for alternate fuel installations serves several critical purposes, enabling the efficient use of diverse and often challenging fuel types. Here’s a breakdown of its key roles:
Efficient combustion of alternative fuels
- The hot disc provides a dedicated zone for the complete combustion of alternate fuels, including those with varying calorific values, moisture content, and particle sizes.
- This ensures that even low-grade or coarse fuels (e.g., tires, municipal solid waste, biomass, or industrial waste) can be burned effectively.
Improved heat transfer
- The combustion chamber is designed to optimise heat generation and transfer, supplying the kiln with the necessary thermal energy.
- It reduces reliance on primary fossil fuels like coal or petcoke, lowering operating costs.
Reduced emissions
- Proper combustion in the hot disc minimises the release of harmful emissions, such as carbon monoxide (CO), volatile organic compounds (VOCs), and unburned hydrocarbons.
- This helps the cement plant meet environmental regulations and sustainability goal
- Enhanced kiln operation stability
- Burning alternative fuels in the combustion chamber isolates their impact from the main kiln, ensuring stable temperatures and operation within the kiln.
- It minimises disruptions caused by the inconsistent burning behaviour of alternative fuels.
Handling difficult fuels
- The hot disc is specifically designed to process fuels that are challenging to handle in the main kiln or calciner, such as large solid fuels (e.g., tires or large biomass pieces).
- The chamber’s design accommodates prolonged fuel residence time and high temperatures, ensuring complete combustion.
Optimised energy efficiency
- By burning alternate fuels close to the kiln inlet or calciner, the hot disc provides pre-heated gases to the kiln system, improving energy efficiency.
- It contributes to a more uniform temperature profile, enhancing clinker quality.
Increased use of waste-derived fuels
- Many cement plants aim to increase their Thermal Substitution Rate (TSR)—the percentage of energy derived from alternative fuels. The hot disc facilitates this transition by enabling higher volumes and more diverse types of alternate fuels to be used safely and efficiently.
Overall benefits
The hot disc system allows cement plants to:
- Reduce dependency on fossil fuels
- Lower operational costs
- Improve sustainability by using waste as a resource
- Comply with stricter environmental regulations.
Rotating hot disc
- Function: The central component where alternative fuels, such as coarse solids (e.g., tires, plastics, or biomass), are introduced and combusted.
Key features:
- Rotating design for even fuel distribution.
– High-temperature resistance to handle intense combustion conditions.
– Adjustable speed to optimise fuel combustion time and efficiency.
Fuel feed system
- Function: Delivers alternative fuels to the hot disc in a controlled manner.
- Key components:
– Conveyors, pneumatic systems, or screw feeders for fuel transport.
– Chutes or injection systems for precise fuel placement.
– Hoppers or silos for storage of alternate fuels before feeding.

Concrete
Adani’s Strategic Emergence in India’s Cement Landscape
Published
2 weeks agoon
September 16, 2025By
admin
Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.
India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.
Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:
- September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
- December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
- August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
- April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
- Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
- Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
- Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
- Orient Cement: It would serve as a principal manufacturing facility following the merger.
Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:
- By FY 2026: Reach 118 MTPA
- By FY 2028: Target 140 MTPA
These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).
Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.
Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.
Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.
Challenges potentially include:
- Integration challenges across systems, corporate cultures, and plant operations
- Regulatory sanctions for pending mergers and new capacity additions
- Environmental clearances in environmentally sensitive areas and debt management with input price volatility
When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.
Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.
About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.
Concrete
Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series
Published
1 month agoon
August 16, 2025By
admin
PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.
Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.
Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.
Beyond energy efficiency, the retrofit significantly improved operational parameters:
- Lower thermal stress on equipment
- Extended lubricant drain intervals
- Reduction in CO2 emissions and operational costs
These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.
Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:
- Enhanced component protection
- Extended oil life under high loads
- Stable performance across fluctuating temperatures
By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.
Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.
A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape

CCU testbeds in Tamil Nadu

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape
