Concrete
Grinding aids help in reducing the agglomeration of particles
Published
1 year agoon
By
Roshna
Lokesh Chandra Lohar, General Manager – Technical and Executive Cell, Wonder Cement, shares insights on overcoming challenges, leveraging innovations and the crucial role of R&D in maintaining high standards in cement production.
Can you provide an overview of the grinding process in your cement manufacturing plant and its significance in the overall production process?
Cement grinding unit is used to grind clinker and gypsum into a fine powder, known as cement. The process of grinding involves grinding of the clinker to a fine powder, which is then mixed with gypsum, fly ash and other additives to produce cement.
At Wonder Cement, our grinding processes are pivotal in ensuring high-quality cement production by utilising state of art technologies ex. Vertical Roller Mill (VRM), roller press with ball mill in combi circuit and finish mode grinding and high-efficiency classifier, have achieved optimal particle size distribution and energy efficiency.
Our commitment to sustainability is evident with usage of energy-efficient equipment, eco-friendly grinding aids and renewable energy sources. Continuous research and development efforts ensure we stay at the forefront of innovations, optimising our grinding operations and minimising impact on the environment.
The main processes involved in a cement grinding unit are:
- Clinker grinding: This is the main process in a cement grinding unit, where the clinker is ground into a fine powder using a ball mill or combi mills (RP+ Ball Mill) or vertical roller mill circuit. The grinding process is controlled to achieve the desired fineness of the cement.
- Gypsum and other additives: Gypsum is added to the clinker during the grinding process to regulate the setting time of the cement. Other additives such as fly ash, BF slag and pozzolana may also be added to improve the performance of the cement.
- Packaging: Once the grinding process is complete, the cement is stored in silos before being packed in bags or loaded into bulk trucks for transportation.
- Quality control: Quality control measures are in place throughout the grinding process to ensure that the final product meets the required specifications, including strength, setting time, and consistency.What are the main challenges you face in the grinding process, and how do you address these challenges to maintain efficiency and product quality?
The main challenges in the grinding process include high energy consumption, frequent wear and maintenance, variability in clinker properties, environment impact and ensuring consistent product quality. To address these challenges, we have implemented several strategies: - High energy consumption: Clinker grinding is energy-intensive, and high energy costs can significantly impact the overall production costs of cement.
This is one of the primary challenges in the grinding process. - Use of high-efficiency equipment: We have state-of-the-art energy-efficient grinding equipment, such as vertical roller mills (VRM), Combi Circuit (roller press with ball mill), which consume significantly less energy consumption.
- Process optimisation: Real time monitoring and optimisation of the grinding process to minimise energy consumption.
- Frequent wear and maintenance: The grinding equipment, such as mills and crushers, is subjected to wear over time. Frequent maintenance and downtime can affect production efficiency.
- Regular maintenance: Implement a proactive maintenance schedule to address wear and tear promptly, ensuring the equipment remains in optimal condition.
- Proper lubrication: Adequate lubrication of moving parts can extend the lifespan of grinding equipment.
Use of wear-resistant materials for components, which are prone to wear and abrasion. - Variability in clinker properties: Clinker properties can vary from one batch to another, leading to inconsistencies in the grinding process and the quality of the final cement product.
- Clinker sources: At Wonder we have one clinker source, which is our mother plant at Nimbahera, Rajasthan and we distribute clinker to various split GU’s from Nimbahera. This helps us to maintain uniform clinker quality across each location.
- Quality control: Rigorous quality control measures help us identify and address variations in clinker properties. Adjust grinding parameters as needed to compensate for these variations. (ex. use of cross belt analyser and on-line particle size distribution)
- Environmental impact: Energy-intensive grinding processes can have environmental repercussions due to high dust emissions and energy consumption.
Use of high efficiency dust collection and suppression system to keep emissions below statutory norms - Sustainable grinding aids: Consider using eco-friendly grinding aids that enhance grinding efficiency without compromising cement quality and environmental standards.
- Alternative fuels: Use alternative and more sustainable fuels in the cement kiln and hot gas generated to reduce carbon emissions.
- Use of clean energy in logistics:
To reduce carbon emissions, sustainable alternatives are also sought for inland transport. We have involved neutral internal transports (electric powered trucks). - Automation and digitalisation of production:
- Wonder Cement has already initiated the process to implement Smart Cement Industry 4.0.
- With Industry 4.0, the automation and digitalisation of operations, including the use of sensors, remote diagnosis, analysis of big data (including the artificial intelligence analysis of unstructured data such as images and video), equipment, virtual facilities, and intelligent control systems will be done automatically (based first on ‘knowledge capture’ and then on machine learning). For Process optimisation we are using the FLS Process expert system (PXP) system. This allows for system optimisation and increased efficiency gains in production.
How do grinding aids contribute to the efficiency of the grinding process in your plant? What types of grinding aids do you use?
Grinding aids help in reducing the agglomeration of particles, thus improving the overall grinding efficiency and ensuring a smoother and more efficient grinding process without having adverse effect on any of the properties of the resulting cement. In cement manufacturing, various types of grinding aids are used to improve the efficiency of the grinding process. These include:
Glycol-based grinding aids
- Composition: Ethylene glycol and diethylene glycol.
- Usage: Commonly used in to improve the grinding efficiency and reduce energy consumption.
Amine-based grinding aids
- Composition: Triethanolamine (TEA) and Triisopropanolamine (TIPA).
- Usage: Effective in improving the grindability of clinker and other raw materials, enhancing cement strength and performance.
Polyol-based grinding aids
Composition: Polyethylene glycol and other polyol compounds.
Usage: Used to improve the flowability of the material and reduce the tendency of particles
to agglomerate.
Acid-based grinding aids
Composition: Various organic acids.
Usage: Used to modify the surface properties of the particles, improving the grinding efficiency and final product quality.
Specialty grinding aids
- Composition: Proprietary blends of various chemicals tailored for specific materials and grinding conditions.
- Usage: Customised to address challenges in the grinding process, such as the use of alternative raw materials or specific performance requirements.
Can you discuss any recent innovations or improvements in grinding technology that have been implemented in your plant?
Recent innovations and improvements in grinding technology:
- Selection of state-of-the-art vertical roller mills along with high efficiency classifier (VRMs): VRMs are more energy-efficient and have lower power consumption, leading to significant energy savings. They also provide a more consistent product quality and require less maintenance. For raw meal grinding, we have both VRM and roller press.
- Wear-resistant materials and components: Upgrading grinding media, liners and other components with wear-resistant materials. These materials extend the lifespan of the equipment, reduce downtime, and lower maintenance costs. Examples include ceramic liners and high chrome grinding media.
- Intelligent monitoring and predictive maintenance: Utilising IoT sensors and predictive analytics to monitor equipment health. Predictive maintenance helps identify potential issues before they lead to equipment failure, reducing unplanned downtime and maintenance costs. It ensures optimal performance and prolongs equipment life.
- Optimisation software and simulation tools: Using simulation software to model and optimise the grinding process. These tools help in understanding the process dynamics, identifying bottlenecks, and testing different scenarios for process improvement. This leads to better process control and efficiency.
How do you ensure that your grinding equipment is energy-efficient and environmentally sustainable?
- Energy-efficient grinding technologies such as VRMs: VRMs are more energy-efficient than traditional ball mills due to their ability to grind materials using less energy.
- Benefits: Up to 30 per cent to 40 per cent reduction in energy consumption.
Use of renewable energy sources (solar power integration): Utilising solar power for grinding operations - Implementation: Signing of long-term open access power purchase agreements (PPA) with renewable energy developers
- Benefits: Reduces reliance on fossil fuels, decreases greenhouse gas emissions.
Environmental sustainability practices
a. Dust collection and emission control
Description: Using bag filters, and covered material handling system
Implementation: Installing and maintaining high-efficiency dust control equipment.
Benefits: Reduces particulate emissions, improves air quality, complies with environmental regulations.
b. Water conservation
Description: Recycle and reuse water in the grinding process.
Implementation: Installing sewage treatment plant (STP)
Benefits: Reduces water consumption, minimises environmental impact.
c. Use of alternative raw materials
Description: Incorporating industrial by-products like fly ash, BF slag and chemical gypsum in the grinding process.
Implementation: Sourcing and blending alternative materials.
Benefits: Reduces the need for natural resources, lowers carbon footprint, enhances sustainability.
By implementing these practices, the plant ensures that its grinding operations are both energy-efficient and environmentally sustainable, aligning with industry best practices and regulatory requirements.
What role does research and development play in optimising your grinding processes and the selection of grinding aids?
Following is the role of research and development in optimising grinding processes and selecting
grinding aids:
- Testing and usage of new low-cost cementitious material: Dedicated R&D teams work on developing and new low-cost cementitious material to reduce clinker factor in cement and
improve efficiency. - Process simulation and modelling: Uses simulation and modelling tools to understand the dynamics of the grinding process and identify areas for improvement.
- Formulation of new grinding aids with reverse engineering: Formulate new grinding aids to enhance the efficiency of the grinding process.
- Testing and evaluation: Conducting laboratory and plant-scale tests to evaluate the effectiveness of different grinding aids.
- Collaboration with industry partners: Collaborating with suppliers, universities and research institutions to stay at the forefront of grinding technology advancements.
Research and development play a crucial role in optimising grinding processes and selecting the appropriate grinding aids. By focusing on innovation, process optimisation, sustainability and continuous improvement, R&D ensures that the plant remains competitive, efficient, and environmentally responsible. This commitment to research and development enables the plant to achieve higher productivity, lower costs and produce superior quality cement.
What trends or advancements in grinding processes and grinding aids do you foresee impacting the cement manufacturing industry in the near future?
The trends and advancements in grinding processes and grinding aids that we see coming up in the near future are:
1. Digitalisation and Industry 4.0
- Advanced process control (APC) and automation
- Internet of things (IoT) and predictive maintenance
- Artificial intelligence (AI) and machine learning (ML)
2. Energy efficiency and sustainability
- Energy-efficient grinding technologies
- Use of renewable energy
3. Innovations in grinding aids
- Eco-friendly grinding aids
- Tailored grinding aids
- Multifunctional grinding aids
4. Advanced materials and components
- Wear-resistant materials for liners
- High-density grinding media
5. Process optimisation and integration
- Holistic process optimisation
6. Sustainability and circular economy
- Circular economy practices
- Carbon capture and utilisation (CCU)
– Kanika Mathur

Concrete
The primary high-power applications are fans and mills
Published
2 days agoon
October 10, 2025By
admin
Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.
As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.
How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.
What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.
Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.
Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.
How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.
What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.
Concrete
We conduct regular internal energy audits
Published
2 days agoon
October 10, 2025By
admin
Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.
In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.
How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.
What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.
What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.
What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.
How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.
What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.
Concrete
Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport
The airport is set to become Asia’s largest air connectivity hub.
Published
2 days agoon
October 10, 2025By
admin
Enlight Metals has supplied 3,200 metric tonne of steel for the newly inaugurated Navi Mumbai International Airport, marking a major contribution to one of India’s largest infrastructure projects and reinforcing the company’s commitment to supporting national development.
The Navi Mumbai International Airport, developed under a Public-Private Partnership led by the Adani Group, was inaugurated today by Prime Minister Narendra Modi. The airport is set to become Asia’s largest air connectivity hub, enhancing regional connectivity, boosting economic growth, and expanding trade opportunities. Prime Minister Modi described the project as a “glimpse of Viksit Bharat,” highlighting its transformative impact on infrastructure and development in the region.
“The supply of 3,200 metric tonne of steel for this key project aligns with our focus on supporting critical infrastructure development through reliable and timely metal sourcing. Enlight Metals is committed to enhancing transparency and efficiency in the steel supply chain, contributing to projects integral to India’s growth objectives,” said Vedant Goel, Director, Enlight Metals.
Enlight Metals has implemented technology-driven solutions to strengthen supply chain efficiency, ensuring consistent availability of construction materials for large-scale projects nationwide. Its contribution to the Navi Mumbai International Airport underscores the company’s growing role in supporting India’s infrastructure development initiatives.
This milestone reflects Enlight Metals’ ongoing engagement in delivering quality materials and timely services for major national projects, further cementing its position as a reliable partner in India’s infrastructure sector

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha
Trending News
-
Concrete4 weeks ago
Adani’s Strategic Emergence in India’s Cement Landscape
-
Concrete2 weeks ago
Cement Margins Seen Rising 12–18 per cent in FY26
-
Uncategorized1 week ago
Jindal Steel Commissions 5 MTPA Blast Furnace At Angul
-
Uncategorized1 week ago
Nippon Steel Buys 30% Stake In Canada’s Kami Iron Ore Project