Concrete
From Clinker to Cement
Published
1 year agoon
By
Roshna
ICR explores the details of the grinding process, which is a critical stage in cement manufacturing, which significantly impacts the final product’s quality and characteristics. By finely grinding raw materials into clinker and mixing them with gypsum, cement manufacturers ensure the fineness and uniformity essential for strong and durable cement.
The grinding process is a critical stage in cement manufacturing, as it directly impacts the final product’s quality and characteristics. During this process, raw materials such as limestone, clay, and other additives are finely ground into a powder, known as clinker. This fine powder is then mixed with gypsum and other materials to form cement.
The quality of the grinding process determines the fineness and uniformity of the cement particles, which are crucial for the strength and durability of the final product. Proper grinding enhances the hydration rate of cement, leading to faster setting times and improved strength development. Additionally, efficient grinding reduces energy consumption and minimises production costs, making it a vital aspect of sustainable cement manufacturing.
Lokesh Chandra Lohar, General Manager – Technical and Executive Cell, Wonder Cement, says, “At Wonder Cement, our grinding processes are pivotal in ensuring high-quality cement production by utilising state of art technologies ex. Vertical Roller Mill (VRM), roller press with ball mill in combi circuit and finish mode grinding and high-efficiency classifier, have achieved optimal particle size distribution and energy efficiency.”
“Our commitment to sustainability is evident with usage of energy-efficient equipment, eco-friendly grinding aids and renewable energy sources. Continuous research and development efforts ensure we stay at the forefront of innovations, optimising our grinding operations and minimising impact on the environment,” he adds.
In cement manufacturing, the grinding process typically involves the use of mills to reduce the size of the clinker and other raw materials. The most commonly used mills are ball mills and vertical roller mills, although roller presses and other grinding technologies are also employed.
- Ball mills: These are traditional grinding systems where clinker and other materials are crushed and ground by rotating steel balls within a cylindrical drum. Ball mills are known for their robustness and ability to produce finely ground cement.
- Vertical roller mills: These mills use large rollers to crush the clinker and raw materials against a rotating table. They are energy-efficient and produce a more uniform particle size distribution, making them increasingly popular in modern cement plants.
- Roller presses: Often used in combination with ball mills, roller presses apply high pressure to the materials, resulting in finer grinding and energy savings.
The grinding process is typically controlled using sophisticated instrumentation and automation systems to ensure consistent quality and efficiency. By optimising the grinding process, cement manufacturers can enhance product performance, reduce environmental impact, and improve overall profitability.
“At UCWL, the main challenges in the grinding process include high energy consumption, maintaining consistent product fineness, and managing moisture content in raw materials. To address these issues, UCWL uses energy-efficient VRMs, optimising parameters and employing SMARTA control systems to reduce energy usage. Consistency in product fineness is achieved through the use of online and offline PHD analysers and real-time quality control measures. Additionally, proper mixing and covered storage of raw materials help minimise moisture variations, ensuring efficient and high-quality grinding,” says Manish Samdani, Head – Quality Control, Udaipur Cement Works Limited (UCWL).
“UCWL implements rigorous raw material testing and quality control procedures to ensure consistent feed quality. Real-time data is used to adjust process parameters, compensating for any variations in raw material properties. By addressing these challenges with advanced technologies, continuous monitoring, and strict quality control measures, UCWL maintains high efficiency and superior product quality in its grinding operations,” he adds.
Modern control systems and automation optimise grinding
efficiency by enabling real-time adjustments to key
parameters, improving energy use and cement quality.
Energy efficiency in grinding
Grinding is one of the most energy-intensive processes in cement manufacturing, accounting for a significant portion of the overall energy consumption in a cement plant. The process involves reducing the size of clinker and other raw materials into a fine powder, which requires considerable mechanical energy. The efficiency of the grinding process directly influences the energy consumption, with traditional grinding technologies like ball mills typically consuming more energy compared to modern alternatives. As the cement industry faces increasing pressure to reduce its carbon footprint and operational costs, optimising energy consumption in grinding processes has become a key focus.
According to a report published by Cetin Hosten and Berkan Fidan at Science Direct, the electrical energy consumed in the conventional cement making process is typically 95 to 110 kWh per ton of cement. Almost 70 per cent of this electrical energy is used for comminution, which includes crushing and grinding of cement raw materials and clinker
grinding. The clinker grinding stage accounts for approximately 40 per cent of the electric energy consumed in cement production.
Several strategies can be employed to reduce energy usage in cement grinding processes. One effective approach is the adoption of advanced grinding technologies such as vertical roller mills (VRMs) and roller presses, which are known for their superior energy efficiency. These technologies not only reduce the energy required for grinding but also improve the quality and consistency of the cement. Additionally, process optimisation techniques, including the use of grinding aids and optimising the grinding media, can enhance grinding efficiency and reduce energy consumption. Implementing automated control systems and predictive maintenance can further minimise energy wastage by ensuring optimal operation and timely maintenance of equipment.
Anant Pokharna, CEO, Unisol Inc, says, “There is a significant free charge that gets built up on the clinker surface inside the cement mills as the particle size continues to go down. The particles reduce their free charge by agglomerating together, in turn increasing the energy requirements for achieving desired surface area of the final cement. Our grinding aids work on the principle of enhancing electrostatic repulsion and reducing Van der Waals forces as explained in the above query, too. This leads to reduction in energy considerations and significantly increased grindability inside the cement mill.”
“Not all grinding aids have a significant impact on powder fluidity of the resultant cement. We design certain formulations, which enhance the cement fluidity substantially, when the customer specifically asks for this property,” he adds.
Investing in energy-efficient grinding technologies offers numerous benefits for cement manufacturers. Firstly, it leads to significant cost savings by reducing energy bills, which is particularly important in a highly competitive industry. Secondly, improved energy efficiency contributes to a lower carbon footprint, aligning with global sustainability goals and regulatory requirements. Furthermore, energy-efficient grinding technologies often provide better control over product quality, resulting in more consistent and high-performance cement products. Overall, these technologies enhance the operational efficiency and environmental sustainability of cement
plants, making them a vital component of modern cement manufacturing.
Adopting advanced technologies like VRMs and roller presses enhances energy efficiency and improves cement quality.
Process optimisation in cement grinding
Process optimisation in cement grinding is crucial for enhancing efficiency, reducing energy consumption, and improving the overall quality of the final product. This involves fine-tuning various parameters and employing advanced technologies to maximise the performance of grinding systems.
One key aspect of process optimisation is the selection and maintenance of grinding media and equipment. The choice of grinding media, such as steel balls or ceramic beads, can significantly impact the grinding efficiency and energy consumption. Properly maintaining and regularly replacing worn-out grinding media ensures optimal grinding conditions and prevents unnecessary energy losses.
The use of modern control systems and automation also plays a vital role in optimising the grinding process. These systems allow for real-time monitoring and adjustment of key parameters, such as mill speed, pressure, and material feed rates. By continuously analysing the grinding conditions and making precise adjustments, these systems can optimise the grinding efficiency, reduce energy consumption, and maintain consistent product quality.
Additionally, employing grinding aids can enhance the grinding efficiency. These chemical additives reduce the energy required for grinding
by preventing the agglomeration of particles and improving the flowability of the material. This results in a finer and more uniform product, with potential cost savings due to reduced energy use and increased mill throughput.
Process optimisation in cement grinding is a multi-faceted approach that requires careful consideration of equipment, materials, and operational strategies. By focusing on these aspects, cement manufacturers can achieve significant improvements in productivity, energy efficiency, and product quality, ultimately enhancing their competitiveness in the market.
Grinding aids and additives
Grinding aids are chemical additives used in the cement manufacturing process to enhance the grinding efficiency of the mill and improve the quality of the final product. The primary purpose of these additives is to reduce the energy required for grinding, thus lowering production costs. Grinding aids work by preventing the agglomeration of cement particles, which can otherwise form coatings on the grinding media and mill liners, reducing grinding efficiency. Common types of grinding aids include glycols, alkanolamines, and phenol-based compounds. These chemicals are typically added in small quantities, ranging from 0.01 to 0.1 per cent of the total weight of the materials being ground.
The use of grinding aids significantly impacts the grinding process and the quality of the cement produced. By preventing particle agglomeration, grinding aids improve the mill’s efficiency, allowing for finer grinding and a more uniform particle size distribution. This results in a more reactive cement, which can enhance the strength and durability of the final product. Additionally, grinding aids can reduce the energy consumption of the grinding process, leading to cost savings and a lower environmental footprint. However, it is crucial to select appropriate grinding aids and dosage levels, as excessive use can lead to negative effects, such as reduced workability or setting time of the cement.
Recent advancements in grinding aid technology have focused on developing more efficient and environmentally friendly additives. These advancements include the use of bio-based grinding aids, which are derived from renewable resources and have a lower environmental impact compared to traditional chemicals. Additionally, new formulations are being developed to improve specific properties of cement, such as reducing the water demand or enhancing sulfate resistance. The ongoing research and development in this field aims to create grinding aids that not only improve grinding efficiency and cement quality but also contribute to sustainable manufacturing practices in the cement industry.
Quality control in grinding
The quality of cement is heavily influenced by the grinding process, with key parameters such as fineness and particle size distribution playing a crucial role. Fineness, measured by the specific surface area, determines the reactivity of the cement; finer cement particles have a larger surface area that can react more quickly with water, enhancing the strength and setting characteristics of the cement. Particle size distribution (PSD) is equally important, as it affects the workability, strength development, and durability of the cement. A well-graded PSD ensures a balance between the early strength gain and long-term durability, minimising issues such as excessive water demand or poor cohesion in the mix.
Lab testing and quality control measures are essential in monitoring and ensuring the consistency of cement quality. During grinding, samples are regularly taken and tested for parameters like fineness, PSD, and chemical composition. Advanced techniques, such as laser diffraction analysis, are used to precisely measure particle sizes and distributions. In addition to physical testing, chemical analysis is conducted to ensure the correct proportion of clinker, gypsum, and other additives, which directly influence the performance characteristics of the cement. Quality control measures also involve continuous monitoring of the grinding process, adjusting operating conditions to maintain optimal grinding efficiency and product consistency.
Ensuring consistency in cement quality is critical for maintaining customer satisfaction and meeting industry standards. This involves implementing robust quality assurance systems that include standard operating procedures, regular equipment maintenance, and staff training. Automated control systems can also be used to regulate the grinding process in real time, adjusting parameters such as mill speed, feed rate, and temperature to maintain consistent product characteristics. By rigorously adhering to quality control protocols, manufacturers can produce cement with consistent performance characteristics, ensuring reliability and trustworthiness in their products. This consistency is vital for building materials, where uniformity in cement quality can significantly impact the safety and durability of construction projects.
Conclusion
The grinding process is a fundamental aspect of cement manufacturing that significantly influences the quality, efficiency, and sustainability of the final product. The choice of grinding mills, such as ball mills, vertical roller mills, and roller presses, plays a crucial role in determining the energy consumption and fineness of the cement produced. Grinding aids and additives further enhance the efficiency of the grinding process, enabling finer and more uniform particle size distribution, which is essential for achieving desired cement properties.
Quality control measures, including rigorous lab testing and process monitoring, are indispensable for ensuring consistent cement quality. By focusing on parameters like fineness and particle size distribution, manufacturers can optimise the reactivity and performance of their products. The use of advanced technologies and automation in process optimisation not only improves grinding efficiency but also reduces energy consumption and environmental impact.
Overall, a comprehensive approach to grinding in cement manufacturing—incorporating advanced technologies, quality control measures, and sustainable practices—ensures that the industry meets the growing demands for high-quality, durable and environmentally friendly construction materials. As the industry continues to evolve, ongoing research and innovation in grinding processes and technologies will be key to maintaining competitiveness and sustainability in the global market.
– Kanika Mathur
Concrete
Adani’s Strategic Emergence in India’s Cement Landscape
Published
5 days agoon
September 16, 2025By
admin
Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.
India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.
Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:
- September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
- December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
- August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
- April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
- Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
- Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
- Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
- Orient Cement: It would serve as a principal manufacturing facility following the merger.
Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:
- By FY 2026: Reach 118 MTPA
- By FY 2028: Target 140 MTPA
These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).
Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.
Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.
Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.
Challenges potentially include:
- Integration challenges across systems, corporate cultures, and plant operations
- Regulatory sanctions for pending mergers and new capacity additions
- Environmental clearances in environmentally sensitive areas and debt management with input price volatility
When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.
Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.
About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.
Concrete
Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series
Published
1 month agoon
August 16, 2025By
admin
PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.
Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.
Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.
Beyond energy efficiency, the retrofit significantly improved operational parameters:
- Lower thermal stress on equipment
- Extended lubricant drain intervals
- Reduction in CO2 emissions and operational costs
These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.
Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:
- Enhanced component protection
- Extended oil life under high loads
- Stable performance across fluctuating temperatures
By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.
Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.
A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape

CCU testbeds in Tamil Nadu

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape
