Concrete
Role of Gasification
Published
2 years agoon
By
admin
Dr Prateek Sharma, KPK Reddy, Moon Chourasia and Dr DK Panda, National Council for Cement and Building Materials (NCCBM), Ballabgarh, India, present their ideas on the integration of high ash refuse derived fuel and the role of gasification in the cement manufacturing process.
Refuse derived fuel (RDF) has been identified as one of the major fuels for the Indian cement industry to achieve TSR of around 30 per cent by 2030. However, challenges persist in maximising RDF utilisation in cement production like incomplete combustion, increased specific heat consumption, and inconsistent RDF quality due to varying sources and moisture content which can be overcome by RDF gasification. Gasification of RDF produces syngas that can be used as fuel, offering advantages in terms of combustion efficiency and clinker quality, particularly valuable for white cement manufacturing. Moreover, the ash produced in the gasification process can be repurposed as an alternative raw material. Experimental runs in a downward draft gasifier demonstrated the feasibility of RDF gasification and RDF-biomass co-gasification. A multi-zone gasifier model was also developed to simulate RDF gasification, taking into account the heterogeneous nature of RDF. The model successfully predicted the properties of the producer gas in each zone, providing a valuable tool for optimising gasification processes.
Nature of solid waste changes as societies get richer and more urbanised. Instead of biodegradable waste (wet), households generate more and more quantities of plastics, metals, and other non-biodegradable (dry) waste. 65 million tonnes of waste are generated annually in India of which over 62 million tonne is the share of Municipal Solid Waste (MSW). Only about 75-80 per cent of the municipal waste gets collected and out of this only 22- 28 per cent is processed and treated. The remaining MSW is deposited at dump yards. With population explosion and urbanisation, this trajectory is expected to reach 165 million tonnes by 2031, and up to 436 million tonnes by 2045. With this precipitous rise in the quantity of waste generated, the waste collection efficiency in India still has a lot to catch up.
RDF is a form of MSW that has been sorted and subject to basic processing treatment. MSW is treated by shredding and dehydrating to produce Refuse Derived fuel (RDF). It largely comprises combustible components of municipal waste which has more consistent combustion characteristics than unsorted MSW. RDF roughly comprises 15-20 per cent of MSW. As per the current scenario, the availability of RDF, considering the proximity of cement plants in India, is estimated to be around 13600 tonnes of RDF per day, equivalent to 4.96 million tonnes per annum. The Indian cement industry has improved to around 7 per cent thermal substitution rate (TSR) and is targeting to achieve 30 per cent TSR by 2030. Currently, all high TSR plants (14-30 per cent) are using RDF and plastics as major fuel with 69 per cent share in quantity. Currently, biomining is also being practised all over the country’s landfills to produce fractions comprising RDF, biodegradable matter, compost, and inert component. RDF produced is being sent to cement plants. However, there are operational challenges.
CHALLENGES WITH RDF USAGE
The maximum thermal substitution rate (TSR) achieved through RDF is 80-100 per cent in the calciner, while it is limited to 50-60 per cent in the kiln burner. Different AF pre-combustion technologies, advancements in multi-channel burners, and new satellite burners have supported high TSR worldwide. Extensive efforts in modelling kiln burners and calciners lead to enhanced TSR. However, the cement industry still faces fundamental operational issues such as high CO and incomplete combustion, increased specific heat consumption, reduced flame temperature, jamming and buildups. The nature of RDF including moisture content varies enormously with changes in sources. Improper segregation, low calorific value, high chloride content, cost fluctuations and poor characterisation facilities leads to an inconsistent quality altogether affecting the production and quality. Higher RDF utilisation sometimes requires a kiln bypass system which along with pre-processing also adds up as an additional cost.
RDF GASIFICATION AS A GAME CHANGER
RDF gasification can pose a promising solution to eliminate operational issues. Gasification is the thermal conversion of carbonaceous matter into a syngas by partial oxidation. Here the trash is heated in a low-oxygen environment to the point that it breaks down into its constituent molecules. This reaction has two products: a combustible gas called syngas and inert ash or char. Syngas can be directly burned in the calciner/kiln with minimal prior cleaning. Syngas has better combustion properties in the calciner than even small size solid waste directly fed to the calciner. Moisture will participate in gasification reactions to a certain extent and increase the NCV of syngas by contributing to H2 production through water gas shift reaction. NCV variations of the input fuel mix (coal and syngas) are reduced substantially due to consistent syngas composition. Moreover, it offers better clinker quality due to no additional ash in the clinker. No ash absorption by clinker can also facilitate the usage of marginal and low-grade limestone. Thus, a hard-to-burn fuel can be made easily combustible. Gasification integration with the cement industry will help achieve the target of 25 per cent TSR within the timeframe. The GOI has set a target of 100 million tonnes of coal gasification by the year 2030. This will also facilitate co-gasification of coal and waste, having the advantage of improved syngas quality.
GASIFIER INTEGRATION CONFIGURATIONS
There can be different configurations for integrating the gasifier with the pyroprocessing system reported in literature. Fuel gasification taking place in a gasifier in the presence of kiln exhaust gas at high temperature along with a portion of tertiary air from the cooler can be one option. Syngas gets burnt in the calciner in the presence of balanced tertiary air to provide heat for raw meal calcination. Tertiary air is split between calciner and gasifier. Another configuration involves a unique concept of separate hydrogen production taking advantage of the cement manufacturing process. Ash from the gasifier can be sent to the smoke chamber where some unburnt carbon present in ash will get burnt, and the heating value can be utilised for combustion purpose. Another way of ash utilisation is an alternative raw material. The syngas can also prove to be very helpful in white cement manufacturing. As per IS 8042, the iron content in white cement should be less than 1 per cent and the degree of whiteness should be greater than 70 per cent. As syngas has no residual ash, the whiteness index and iron content can be easily maintained. One configuration involves a separate gasifier set up and syngas produced being sent to the calciner replacing conventional fuel.
MODELLING and EXPERIMENTAL RUNS
National Council for Cement and Building Materials (NCCBM) in collaboration with the Birla Institute of Technology (BITS) Pilani-Pilani campus carried out experimental runs in a downward draft gasifier for RDF gasification and RDF-biomass mix co-gasification. RDF contains ash in the range of 30-50 per cent. A multizone gasifier model was developed for RDF gasification having four zones, i.e., drying, pyrolysis, oxidation/combustion and reduction/gasification. In each zone, different thermochemical phenomena occur. A stoichiometric approach is followed for modelling the drying, pyrolysis and combustion zone. The reduction zone is modelled as a cylindrical fixed bed reactor with a uniform cross-sectional area. The developed differential equations are solved using simulation software to predict the producer gas properties. Further, to study the integration of gasifier with calciner, a stoichiometric based model has been developed for calciner along with material and energy balance which predicted calciner outlet temperatures, gas composition, SO2 and CO2 for co-processing of producer gas as an alternative fuel in white cement plant replacing petcoke at 15 per cent TSR.
RESULTS
Gasification experiments were performed with RDF fluff and RDF pelléts as feedstock and air as gasifying agents. The gas yield ranges from 2.43-3.65 Nm/kg RDF with LHV of 1.87-2.24 MJ/Nm3 RDF and cold gas efficiency of 44-60 per cent. It is observed that RDF containing high ash content in the range of ~31-51 per cent is quite challenging to gasify in a downdraft-type gasifier with operational bridging and clinker formation issues. Upon adding O2 to air as a gasifying agent, LHV and CGE increased by 78 per cent and 30 per cent, respectively further, more experimental runs were carried out using RDF and biomass mix in different ratios using air as a gasifying agent. RDF-biomass mix co-gasification results are better than RDF gasification in terms of LHV and CGE. Upon adding O2 to air as a gasifying agent for a 50:50 RDF-biomass mix, LHV and CGE uncreased by 35.5 per cent and 8.35 per cent, respectively.
The proposed multizone gasifier model can predict the output of each zone satisfactorily since the model assumptions are more realistic and cater to the heterogeneous nature of RDF. The impact of equivalence ratio (ER), moisture content and reduction zone length on the performance of the gasifier are evaluated. For calciner modelling at 15 per cent
TSR, the model predicted the calciner outlet temperature accurately compared to the baseline scenario (100 per cent petcoke firing). Considering the biogenic content in RDF, CO2 mitigation potential due to RDF utilisation as producer gas is estimated to be 10.5 per cent of the baseline scenario at 15 per cent TSR.
CONCLUSION
RDF gasification stands out as a transformative approach to address operational challenges encountered in maximising RDF utilisation. By converting RDF into a syngas, this method provides several advantages apart from overcoming the current operational challenges during co-processing of RDF in cement production. The experimental runs and modelling efforts conducted in this research explore the viability of RDF gasification as a game-changing solution. This aligns well with India’s broader environmental, energy and waste utilisation objectives, positioning RDF gasification as a sustainable and efficient means of addressing the growing issue of solid waste while contributing to the country’s sustainability goals.
ABOUT THE AUTHORS

Dr Prateek Sharma is an energy auditor, manager at Centre for Mining, Environment, Plant Engineering, and Operations. He is also a Programme Leader of Advanced Fuel Technology programme at NCCBM.

KPK Reddy is an energy auditor, Manager at Centre for Mining, Environment, Plant Engineering and Operations. He is also a member of Project Engineering and System Design at NCCBM.

Moon Chourasia is a Project Scientist at the Centre for Mining, Environment, Plant Engineering and Operations at NCCBM.

Joint Director, NCB has over 36 years of experience in the areas of Geology, Raw Materials and Mining and administrative experience as a Team Leader, Programme Leader and Head of the Centre. He has executed more than 50 major industrial R&D projects.

Concrete
The primary high-power applications are fans and mills
Published
2 days agoon
October 10, 2025By
admin
Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.
As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.
How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.
What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.
Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.
Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.
How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.
What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.
Concrete
We conduct regular internal energy audits
Published
2 days agoon
October 10, 2025By
admin
Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.
In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.
How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.
What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.
What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.
What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.
How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.
What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.
Concrete
Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport
The airport is set to become Asia’s largest air connectivity hub.
Published
2 days agoon
October 10, 2025By
admin
Enlight Metals has supplied 3,200 metric tonne of steel for the newly inaugurated Navi Mumbai International Airport, marking a major contribution to one of India’s largest infrastructure projects and reinforcing the company’s commitment to supporting national development.
The Navi Mumbai International Airport, developed under a Public-Private Partnership led by the Adani Group, was inaugurated today by Prime Minister Narendra Modi. The airport is set to become Asia’s largest air connectivity hub, enhancing regional connectivity, boosting economic growth, and expanding trade opportunities. Prime Minister Modi described the project as a “glimpse of Viksit Bharat,” highlighting its transformative impact on infrastructure and development in the region.
“The supply of 3,200 metric tonne of steel for this key project aligns with our focus on supporting critical infrastructure development through reliable and timely metal sourcing. Enlight Metals is committed to enhancing transparency and efficiency in the steel supply chain, contributing to projects integral to India’s growth objectives,” said Vedant Goel, Director, Enlight Metals.
Enlight Metals has implemented technology-driven solutions to strengthen supply chain efficiency, ensuring consistent availability of construction materials for large-scale projects nationwide. Its contribution to the Navi Mumbai International Airport underscores the company’s growing role in supporting India’s infrastructure development initiatives.
This milestone reflects Enlight Metals’ ongoing engagement in delivering quality materials and timely services for major national projects, further cementing its position as a reliable partner in India’s infrastructure sector

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha
Trending News
-
Concrete4 weeks ago
Adani’s Strategic Emergence in India’s Cement Landscape
-
Concrete2 weeks ago
Cement Margins Seen Rising 12–18 per cent in FY26
-
Uncategorized1 week ago
Jindal Steel Commissions 5 MTPA Blast Furnace At Angul
-
Uncategorized1 week ago
Nippon Steel Buys 30% Stake In Canada’s Kami Iron Ore Project