Connect with us

Concrete

Innovation, Sustainability and Future-Ready Strategies

Published

on

Shares

Dr SB Hegde, Professor, Department of Civil Engineering, Jain College of Engineering and Technology, Hubli, and Visiting Professor, Pennsylvania State University, USA, discusses the role of technology in pioneering the global cement industry in a two-part series.

In the dynamic realm of construction, the global cement industry plays an indispensable role as the bedrock of infrastructure development. As we navigate an era defined by rapid technological evolution and an escalating call for sustainability, our cement enterprise stands at the forefront of transformative change. This article explores our vision, strategies and initiatives, meticulously designed to pioneer innovation, champion sustainability and pave the way for a future-ready cement industry.
In a world where construction demands are ever-expanding, our commitment goes beyond mere production — we are architects of change, shaping the industry’s trajectory towards a more sustainable and technologically advanced future. From the heart of our cement plants to the far reaches of our marketing endeavours and educational initiatives, we are driving innovation, fostering global collaboration, and embracing cutting-edge technologies.
An attempt has been made to discuss Industry 4.0 integration, emission-free aspirations, electrification, hydrogen revolution and robotic workforce converging to redefine cement production.
Witness how our marketing strategies, with a virtual global presence, augmented reality engagement, and AI-powered personalisation, transcend traditional boundaries. Explore how we are dedicated to teaching customers through online knowledge sharing and global educational partnerships. Our goal is to imagine a world where eco-friendly building practices and environmental responsibility take the lead.

Industry 4.0 integration
The integration of Industry 4.0 technologies in cement plants represents a revolutionary step towards enhancing efficiency and sustainability on a global scale. Industry 4.0, often referred to as the fourth industrial revolution, involves the intelligent interconnectivity of various technologies to optimise industrial processes. Let’s explore the current status of Industry 4.0 integration in cement plants globally, supported by relevant numbers.

Global overview
A. Adoption rate
Globally, the adoption of Industry 4.0 in cement plants has gained significant momentum. As of the latest data, approximately 30 per cent of major cement plants worldwide have implemented Industry 4.0 technologies in various stages of their production processes.
B. Investments in technology
The global cement industry has witnessed substantial investments in technology upgrades to align with Industry 4.0 principles. Major cement manufacturers have collectively invested over $ 1.5 billion in the past three years to implement smart
technologies, automation and data-driven solutions.
C. Operational efficiency
Industry 4.0 integration has led to a remarkable improvement in operational efficiency. Cement plants leveraging smart sensors, IoT devices and real-time data analytics have reported up to a 20 per cent increase in overall production efficiency.
D. Resource optimisation
The utilisation of Industry 4.0 technologies has enabled better resource optimisation. Cement plants globally have experienced a 15 per cent reduction in energy consumption and a 10 per cent decrease in raw material wastage, contributing to both economic and environmental sustainability.

The India overview
A. Current adoption rate
In India, the adoption of Industry 4.0 in cement plants is gaining traction, albeit at a slightly slower pace compared to global counterparts. Approximately 15 per cent of major cement plants in India have initiated the integration of Industry 4.0 technologies into their manufacturing processes.
B. Investments in technology
Indian cement manufacturers have recognised the importance of technology investments. Over the last two years, the industry has invested around `5.00 billion (approximately $ 67 million) collectively in upgrading technologies to align with Industry
4.0 standards.
C. Operational impact

Early adopters in India have reported positive operational impacts. Cement plants that have embraced Industry 4.0 technologies are witnessing a 12 per cent improvement in production efficiency, showcasing the immediate benefits of intelligent automation and data-driven decision-making.
D. Challenges and opportunities
While the Indian cement industry is on the path to Industry 4.0 integration, challenges such as infrastructure constraints and the need for upskilling the workforce persist. However, the government’s focus on promoting smart manufacturing and the availability of skilled IT professionals present opportunities for rapid advancements.
E. Future trajectory
The global cement industry is expected to witness an accelerated adoption of Industry 4.0 in the coming years. Investments in technology are projected to double, reaching $ 3 billion by 2025. For India, the trajectory is optimistic, with the industry poised to increase its adoption rate to 25 per cent in the next three years, supported by government initiatives and a growing awareness of the benefits of Industry 4.0. Its integration in cement plants is transforming the industry globally, with significant strides in operational efficiency and sustainability. While India is on its journey to catch up with the global trend, the future holds promising prospects for the widespread adoption of intelligent technologies, reshaping the landscape of cement production.

Emission-free aspirations

Carbon capture and storage mechanism
The pursuit of emission-free aspirations in cement plants is a paramount challenge for the global industry, driven by a commitment to sustainability and environmental responsibility. Let’s delve into the current status of emission-free initiatives in cement plants worldwide, accompanied by relevant numbers, and then explore the specific scenario in India.

Global overview
A. Carbon capture and utilisation (CCU)

Globally, cement plants are increasingly adopting cutting-edge Carbon Capture and Utilisation technologies. As of the latest data, approximately 20 per cent of major cement manufacturing facilities worldwide have implemented CCU solutions, capturing and repurposing carbon dioxide emissions.
B. Renewable energy integration
The integration of renewable energy sources into cement production processes is a key strategy for emission reduction. Globally, around 15 per cent of cement plants have transitioned to renewable energy, harnessing solar, wind, and biomass to power various stages of production.
C. Strategic partnerships
Cement manufacturers globally are forming strategic partnerships with technology providers and environmental organisations to accelerate emission-free initiatives. These collaborations have resulted in a 25 per cent increase in the implementation of advanced technologies focused on emission reduction.
D. Zero-emission targets
A notable trend is the establishment of zero-emission targets by leading cement companies. Approximately 10 per cent of major players globally have set ambitious goals to achieve zero net emissions, driving the industry towards a more sustainable future.

Indian scenario
A. CCU initiatives

In India, the adoption of CCU technologies in cement plants is gaining momentum. Around 8 per cent of major cement manufacturers have initiated CCU projects, aiming to capture and repurpose carbon emissions. This aligns with India’s commitment to reduce its carbon footprint.
B. Renewable energy transition
Cement plants in India are increasingly embracing renewable energy sources. As of the latest statistics, approximately 12 per cent of cement facilities in the country have integrated renewable energy solutions, with a focus on solar and wind power.
C. Government initiatives
The Indian government’s emphasis on sustainability and clean energy has catalysed emission-free aspirations in the cement sector. Policies incentivising the adoption of CCU technologies and renewable energy integration have led to a 30 per cent increase in government-supported initiatives.
D. Zero-emission targets in India
While zero-emission targets are in the early stages in India, a notable 5 per cent of major cement companies have set ambitious goals to achieve zero net emissions. This reflects a growing awareness of the need for sustainable practices in the Indian
cement industry.

Challenges and opportunities

  1. Global challenges
  • High initial costs of implementing emission-free technologies.
  • Technical challenges in large-scale deployment of carbon capture solutions.
  • Resistance to change and traditional manufacturing practices.
  1. Global opportunities
  • Increasing availability of government incentives and grants.
  • Growing demand for sustainable and eco-friendly construction materials.
  • Advances in technology and increased collaboration among industry stakeholders.
  1. Indian challenges
  • Infrastructural limitations for widespread adoption of emission-free technologies.
  • Need for financial support and incentives to accelerate initiatives.
  • Limited awareness and education on the benefits of emission-free practices.
  1. Indian opportunities
  • Government initiatives like the National Clean Air Programme (NCAP).
  • Access to abundant sunlight for solar energy generation.
  • Potential for collaboration with international partners for technology transfer.

Future trajectory
The global cement industry is poised for a transformative shift towards emission-free aspirations. Anticipated advancements in technology, coupled with increased government support, are expected to drive widespread adoption. In India, while challenges persist, the commitment to sustainability, coupled with government initiatives, is paving the way for a future where emission-free practices become the norm in the cement sector.

Electrifying Kiln Technology
On the global stage, the initiative to electrify kiln technology in the cement industry is gaining momentum, ushering in a new era of efficiency and sustainability. This ambitious move is not just about reducing carbon footprints; it’s a transformative step that is opening new horizons and setting the stage for a more sustainable future in cement production.
A. Current global initiatives
Several leading cement manufacturers around the world have embraced the electrification of kiln technology, recognising its potential to revolutionise traditional manufacturing processes. As of the latest data, the global cement industry contributes to approximately 8 per cent of total carbon dioxide emissions. Electrification is emerging as a key strategy to address this environmental challenge.
B. Investments and impact
Global investments in electrifying kiln technology are substantial, reflecting a commitment to sustainable practices. For instance, a major cement plant in Europe has invested over €80 million (approximately $ 90 million) in retrofitting its kilns with advanced electric heating systems. This investment is projected to lead to a 30 per cent reduction in carbon emissions from the kiln operations.
C. Technology adoption and innovations
Cutting-edge electric heating elements and control systems are being implemented globally to replace traditional fuel-based kiln technologies. These innovations not only facilitate a significant reduction in greenhouse gas emissions but also offer enhanced temperature control and efficiency, thereby improving overall production quality.

The cement industry looks at solar energy as a beacon of sustainability but there are challenges that need to be addressed to make it more feasible


D. Collaborations and knowledge exchange
The global cement industry is witnessing collaborative efforts between manufacturers, technology providers, and research institutions to accelerate the adoption of electrification technologies. Knowledge exchange platforms and industry collaborations are contributing to a collective understanding of best practices and challenges associated with the electrification transition.
E. Environmental impact
The environmental impact of electrifying kiln technology is substantial. By reducing reliance on fossil fuels, the cement industry can significantly lower its carbon footprint. The precise control afforded by electric heating systems also contributes to a more energy-efficient and environmentally friendly production process.
F. Regulatory drivers
Governments and regulatory bodies worldwide are increasingly recognising the importance of sustainable industrial practices. Incentives, policies, and regulations supporting the adoption of clean technologies are serving as catalysts for the global cement industry to prioritise electrification in kiln operations.
G. Future trajectory
As the global cement industry continues its journey toward electrification, the future trajectory looks promising. Anticipated advancements in technology, increased investments, and collaborative research efforts are expected to drive widespread adoption. This not only benefits individual cement plants but also contributes to the industry’s collective efforts in mitigating climate change.


H. Robust electrification cement plants
In the Indian cement industry, a paradigm shift is underway with a strategic focus on robust electrification. This transformative initiative involves the electrification of kiln technology, a move that not only reduces the industry’s carbon footprint but also opens new horizons in efficient and sustainable cement production.

Current Status
As of now, several prominent Indian cement plants are actively engaged in transitioning their
kiln technology from conventional fossil fuel-based systems to electrified alternatives. The aim is to achieve a substantial reduction in greenhouse gas emissions associated with traditional cement manufacturing processes.

Investments
The investments made in the electrification of kiln technology are both substantial and indicative of the industry’s commitment to sustainability. To provide a concrete example, a leading cement manufacturer in India has allocated over `1.50 billion (approximately $ 20 million) to implement electrified kiln technology. This investment is anticipated to result in an immediate 25 per cent reduction in carbon emissions from the kiln operation.

Technology implementation
Electrification of kiln technology involves the integration of electrically-powered heating systems in lieu of traditional fuel-fired methods. Advanced electrical heating elements are employed to achieve the high temperatures required for the cement manufacturing process, eliminating the reliance on fossil fuels and significantly reducing emissions.

Efficiency gains
Beyond the environmental benefits, the electrification of kiln technology is poised to enhance operational efficiency in cement plants. The precision and controllability of electric heating systems allow for better temperature management, leading to improved product quality and energy efficiency.

Renewable energy integration
In conjunction with electrification, many Indian cement plants are exploring the integration of renewable energy sources to power their operations. Solar and wind energy installations are being considered to meet the electricity demand of electrified kilns,further reducing the carbon intensity of the cement production process.

Governmental support
The Indian government’s push for sustainable industrial practices aligns with the cement industry’s electrification efforts. Incentives, subsidies and favourable policies supporting the adoption of clean technologies play a crucial role in encouraging cement manufacturers to embrace electrification.

Future landscape
Looking ahead, electrification is poised to become a cornerstone of sustainable cement production in India. Continued investments, technology advancements, and industry collaborations are expected to drive widespread adoption, reshaping the sector’s environmental impact and bolstering India’s position in sustainable manufacturing.

List of references will be featured in the concluding part.

ABOUT THE AUTHOR:


Dr SB Hegde is an industrial leader with expertise in cement plant operation and optimisation, plant commissioning, new cement plant establishment, etc. His industry knowledge cover manufacturing, product development, concrete technology and technical services.

Concrete

Balancing Rapid Economic Growth and Climate Action

Published

on

By

Shares



Dr Yogendra Kanitkar, VP R&D, and Dr Shirish Kumar Sharma, Assistant Manager R&D, Pi Green Innovations, look at India’s cement industry as it stands at the crossroads of infrastructure expansion and urgent decarbonisation.

The cement industry plays an indispensable role in India’s infrastructure development and economic growth. As the world’s second-largest cement producer after China, India accounts for more than 8 per cent of global cement production, with an output of around 418 million tonnes in 2023–24. It contributes roughly 11 per cent to the input costs of the construction sector, sustains over one million direct jobs, and generates an estimated 20,000 additional downstream jobs for every million tonnes produced. This scale makes cement a critical backbone of the nation’s development. Yet, this vitality comes with a steep environmental price, as cement production contributes nearly 7 per cent of India’s total carbon dioxide (CO2) emissions.
On a global scale, the sector accounts for 8 per cent of anthropogenic CO2 emissions, a figure that underscores the urgency of balancing rapid growth with climate responsibility. A unique challenge lies in the dual nature of cement-related emissions: about 60 per cent stem from calcination of limestone in kilns, while the remaining 40 per cent arise from the combustion of fossil fuels to generate the extreme heat of 1,450°C required for clinker production (TERI 2023; GCCA).
This dilemma is compounded by India’s relatively low per capita consumption of cement at about 300kg per year, compared to the global average of 540kg. The data reveals substantial growth potential as India continues to urbanise and industrialise, yet this projected rise in consumption will inevitably add to greenhouse gas emissions unless urgent measures are taken. The sector is also uniquely constrained by being a high-volume, low-margin business with high capital intensity, leaving limited room to absorb additional costs for decarbonisation technologies.
India has nonetheless made notable progress in improving the carbon efficiency of its cement industry. Between 1996 and 2010, the sector reduced its emissions intensity from 1.12 tonnes of CO2 per ton of cement to 0.719 tonnes—making it one of the most energy-efficient globally. Today, Indian cement plants reach thermal efficiency levels of around 725 kcal/kg of clinker and electrical consumption near 75 kWh per tonne of cement, broadly in line with best global practice (World Cement 2025). However, absolute emissions continue to rise with increasing demand, with the sector emitting around 177 MtCO2 in 2023, about 6 per cent of India’s total fossil fuel and industrial emissions. Without decisive interventions, projections suggest that cement manufacturing emissions in India could rise by 250–500 per cent by mid-century, depending on demand growth (Statista; CEEW).
Recognising this threat, the Government of India has brought the sector under compliance obligations of the Carbon Credit Trading Scheme (CCTS). Cement is one of the designated obligated entities, tasked with meeting aggressive reduction targets over the next two financial years, effectively binding companies to measurable progress toward decarbonisation and creating compliance-driven demand for carbon reduction and trading credits (NITI 2025).
The industry has responded by deploying incremental decarbonisation measures focused on energy efficiency, alternative fuels, and material substitutions. Process optimisation using AI-driven controls and waste heat recovery systems has made many plants among the most efficient worldwide, typically reducing fuel use by 3–8 per cent and cutting emissions by up to 9 per cent. Trials are exploring kiln firing with greener fuels such as hydrogen and natural gas. Limited blends of hydrogen up to 20 per cent are technically feasible, though economics remain unfavourable at present.
Efforts to electrify kilns are gaining international attention. For instance, proprietary technologies have demonstrated the potential of electrified kilns that can reach 1,700°C using renewable electricity, a transformative technology still at the pilot stage. Meanwhile, given that cement manufacturing is also a highly power-intensive industry, several firms are shifting electric grinding operations to renewable energy.
Material substitution represents another key decarbonisation pathway. Blended cements using industrial by-products like fly ash and ground granulated blast furnace slag (GGBS) can significantly reduce the clinker factor, which currently constitutes about 65 per cent in India. GGBS can replace up to 85 per cent of clinker in specific cement grades, though its future availability may fall as steel plants decarbonise and reduce slag generation. Fly ash from coal-fired power stations remains widely used as a low-carbon substitute, but its supply too will shrink as India expands renewable power. Alternative fuels—ranging from biomass to solid waste—further allow reductions in fossil energy dependency, abating up to 24 per cent of emissions according to pilot projects (TERI; CEEW).
Beyond these, Carbon Capture, Utilisation, and Storage (CCUS) technologies are emerging as a critical lever for achieving deep emission cuts, particularly since process emissions are chemically unavoidable. Post-combustion amine scrubbing using solvents like monoethanolamine (MEA) remains the most mature option, with capture efficiencies between 90–99 per cent demonstrated at pilot scale. However, drawbacks include energy penalties that require 15–30 per cent of plant output for solvent regeneration, as well as costs for retrofitting and long-term corrosion management (Heidelberg Materials 2025). Oxyfuel combustion has been tested internationally, producing concentrated CO2-laden flue gas, though the high cost of pure oxygen production impedes deployment in India.
Calcium looping offers another promising pathway, where calcium oxide sorbents absorb CO2 and can be regenerated, but challenges of sorbent degradation and high calcination energy requirements remain barriers (DNV 2024). Experimental approaches like membrane separation and mineral carbonation are advancing in India, with startups piloting systems to mineralise flue gas streams at captive power plants. Besides point-source capture, innovations such as CO2 curing of concrete blocks already show promise, enhancing strength and reducing lifecycle emissions.
Despite progress, several systemic obstacles hinder the mass deployment of CCUS in India’s cement industry. Technology readiness remains a fundamental issue: apart from MEA-based capture, most technologies are not commercially mature in high-volume cement plants. Furthermore, CCUS is costly. Studies by CEEW estimate that achieving net-zero cement in India would require around US$ 334 billion in capital investments and US$ 3 billion annually in operating costs by 2050, potentially raising cement prices between 19–107 per cent. This is particularly problematic for an industry where companies frequently operate at capacity utilisations of only 65–70 per cent and remain locked in fierce price competition (SOIC; CEEW).
Building out transport and storage infrastructure compounds the difficulty, since many cement plants lie far from suitable geological CO2 storage sites. Moreover, retrofitting capture plants onto operational cement production lines adds technical integration struggles, as capture systems must function reliably under the high-particulate and high-temperature environment of cement kilns.
Overcoming these hurdles requires a multi-pronged approach rooted in policy, finance, and global cooperation. Policy support is vital to bridge the cost gap through instruments like production-linked incentives, preferential green cement procurement, tax credits, and carbon pricing mechanisms. Strategic planning to develop shared CO2 transport and storage infrastructure, ideally in industrial clusters, would significantly lower costs and risks. International coordination can also accelerate adoption.
The Global Cement and Concrete Association’s net-zero roadmap provides a collaborative template, while North–South technology transfer offers developing countries access to proven technologies. Financing mechanisms such as blended finance, green bonds tailored for cement decarbonisation and multilateral risk guarantees will reduce capital barriers.
An integrated value-chain approach will be critical. Coordinated development of industrial clusters allows multiple emitters—cement, steel, and chemicals—to share common CO2 infrastructure, enabling economies of scale and lowering unit capture costs. Public–private partnerships can further pool resources to build this ecosystem. Ultimately, decarbonisation is neither optional nor niche for Indian cement. It is an imperative driven by India’s growth trajectory, environmental sustainability commitments, and changing global markets where carbon intensity will define trade competitiveness.
With compliance obligations already mandated under CCTS, the cement industry must accelerate decarbonisation rapidly over the next two years to meet binding reduction targets. The challenge is to balance industrial development with ambitious climate goals, securing both economic resilience and ecological sustainability. The pathway forward depends on decisive governmental support, cross-sectoral innovation, global solidarity, and forward-looking corporate action. The industry’s future lies in reframing decarbonisation not as a burden but as an investment in competitiveness, climate alignment and social responsibility.

References

  • Infomerics, “Indian Cement Industry Outlook 2024,” Nov 2024.
  • TERI & GCCA India, “Decarbonisation Roadmap for the Indian Cement Industry,” 2023.
  • UN Press Release, GA/EF/3516, “Global Resource Efficiency and Cement.”
  • World Cement, “India in Focus: Energy Efficiency Gains,” 2025.
  • Statista, “CO2 Emissions from Cement Manufacturing 2023.”
  • Heidelberg Materials, Press Release, June 18, 2025.
  • CaptureMap, “Cement Carbon Capture Technologies,” 2024.
  • DNV, “Emerging Carbon Capture Techniques in Cement Plants,” 2024.
  • LEILAC Project, News Releases, 2024–25.
  • PMC (NCBI), “Membrane-Based CO2 Capture in Cement Plants,” 2024.
  • Nature, “Carbon Capture Utilization in Cement and Concrete,” 2024.
  • ACS Industrial Engineering & Chemistry Research, “CCUS Integration in Cement Plants,” 2024.
  • CEEW, “How Can India Decarbonise for a Net-Zero Cement Industry?” (2025).
  • SOIC, “India’s Cement Industry Growth Story,” 2025.
  • MDPI, “Processes: Challenges for CCUS Deployment in Cement,” 2024.
  • NITI Aayog, “CCUS in Indian Cement Sector: Policy Gaps & Way Forward,” 2025.

ABOUT THE AUTHOR:
Dr Yogendra Kanitkar, Vice President R&D, Pi Green Innovations, drives sustainable change through advanced CCUS technologies and its pioneering NetZero Machine, delivering real decarbonisation solutions for hard-to-abate sectors.

Dr Shirish Kumar Sharma, Assitant Manager R&D, Pi Green Innovations, specialises in carbon capture, clean energy, and sustainable technologies to advance impactful CO2 reduction solutions.

Continue Reading

Concrete

Carbon Capture Systems

Published

on

By

Shares



Nathan Ashcroft, Director, Strategic Growth, Business Development, and Low Carbon Solutions – Stantec, explores the challenges and strategic considerations for cement industry as it strides towards Net Zero goals.

The cement industry does not need a reminder that it is among the most carbon-intensive sectors in the world. Roughly 7–8 per cent of global carbon dioxide (CO2) emissions are tied to cement production. And unlike many other heavy industries, a large share of these emissions come not from fuel but from the process itself: the calcination of limestone. Efficiency gains, fuel switching, and renewable energy integration can reduce part of the footprint. But they cannot eliminate process emissions.
This is why carbon capture and storage (CCS) has become central to every serious discussion
about cement’s pathway to Net Zero. The industry already understands and accepts this challenge.
The debate is no longer whether CCS will be required—it is about how fast, affordable, and seamlessly it can be integrated into facilities that were never designed for it.

In many ways, CCS represents the ‘last mile’of cement decarbonisation. Once the sector achieves effective capture at scale, the most difficult part of its emissions profile will have been addressed. But getting there requires navigating a complex mix of technical, operational, financial and regulatory considerations.

A unique challenge for cement
Cement plants are built for durability and efficiency, not for future retrofits. Most were not designed with spare land for absorbers, ducting or compression units. Nor with the energy integration needs of capture systems in mind. Retrofitting CCS into these existing layouts presents a series of non-trivial challenges.
Reliability also weighs heavily in the discussion. Cement production runs continuously, and any disruption has significant economic consequences. A CCS retrofit typically requires tie-ins to stacks and gas flows that can only be completed during planned shutdowns. Even once operational, the capture system must demonstrate high availability. Otherwise, producers may face the dual cost of capture downtime and exposure to carbon taxes or penalties, depending on jurisdiction.
Despite these hurdles, cement may actually be better positioned than some other sectors. Flue gas from cement kilns typically has higher CO2 concentrations than gas-fired power plants, which improves capture efficiency. Plants also generate significant waste heat, which can be harnessed to offset the energy requirements of capture units. These advantages give the industry reason to be optimistic, provided integration strategies are carefully planned.

From acceptance to implementation
The cement sector has already acknowledged the inevitability of CCS. The next step is to turn acceptance into a roadmap for action. This involves a shift from general alignment around ‘the need’ toward project-level decisions about technology, layout, partnerships and financing.
The critical questions are no longer about chemistry or capture efficiency. They are about the following:

  • Space and footprint: Where can capture units be located? And how can ducting be routed in crowded plants?
  • Energy balance: How can capture loads be integrated without eroding plant efficiency?
  • Downtime and risk: How will retrofits be staged to avoid prolonged shutdowns?
  • Financing and incentives: How will capital-intensive projects be funded in a sector with
    tight margins?
  • Policy certainty: Will governments provide the clarity and support needed for long-term investment
  • Technology advancement: What are the latest developments?
  • All of these considerations are now shaping the global CCS conversation in cement.

Economics: The central barrier
No discussion of CCS in the cement industry is complete without addressing cost. Capture systems are capital-intensive, with absorbers, regenerators, compressors, and associated balance-of-plant representing a significant investment. Operational costs are dominated by energy consumption, which adds further pressure in competitive markets.
For many producers, the economics may seem prohibitive. But the financial landscape is changing rapidly. Carbon pricing is becoming more widespread and will surely only increase in the future. This makes ‘doing nothing’ an increasingly expensive option. Government incentives—ranging from investment tax credits in North America to direct funding in Europe—are accelerating project viability. Some producers are exploring CO2 utilisation, whether in building materials, synthetic fuels, or industrial applications, as a way to offset costs. This is an area we will see significantly more work in the future.
Perhaps most importantly, the cost of CCS itself is coming down. Advances in novel technologies, solvents, modular system design, and integration strategies are reducing both capital requirements
and operating expenditures. What was once prohibitively expensive is now moving into the range of strategic possibility.
The regulatory and social dimension
CCS is not just a technical or financial challenge. It is also a regulatory and social one. Permitting requirements for capture units, pipelines, and storage sites are complex and vary by jurisdiction. Long-term monitoring obligations also add additional layers of responsibility.
Public trust also matters. Communities near storage sites or pipelines must be confident in the safety and environmental integrity of the system. The cement industry has the advantage of being widely recognised as a provider of essential infrastructure. If producers take a proactive role in transparent engagement and communication, they can help build public acceptance for CCS
more broadly.

Why now is different
The cement industry has seen waves of technology enthusiasm before. Some have matured, while others have faded. What makes CCS different today? The convergence of three forces:
1. Policy pressure: Net Zero commitments and tightening regulations are making CCS less of an option and more of an imperative.
2. Technology maturity: First-generation projects in power and chemicals have provided valuable lessons, reducing risks for new entrants.
3. Cost trajectory: Capture units are becoming smaller, smarter, and more affordable, while infrastructure investment is beginning to scale.
This convergence means CCS is shifting from concept to execution. Globally, projects are moving from pilot to commercial scale, and cement is poised to be among the beneficiaries of this momentum.

A global perspective
Our teams at Stantec recently completed a global scan of CCS technologies, and the findings are encouraging. Across solvents, membranes, and
hybrid systems, innovation pipelines are robust. Modular systems with reduced footprints are
emerging, specifically designed to make retrofits more practical.
Equally important, CCS hubs—where multiple emitters can share transport and storage infrastructure—are beginning to take shape in key regions. These hubs reduce costs, de-risk storage, and provide cement producers with practical pathways to integration.

The path forward
The cement industry has already accepted the challenge of carbon capture. What remains is charting a clear path to implementation. The barriers—space, cost, downtime, policy—are real. But they are not insurmountable. With costs trending downward, technology footprints shrinking, and policy support expanding, CCS is no longer a distant aspiration.
For cement producers, the decision is increasingly about timing and positioning. Those who move early can potentially secure advantages in incentives, stakeholder confidence, and long-term competitiveness. Those who delay may face higher costs and tighter compliance pressures.
Ultimately, the message is clear: CCS is coming to cement. The question is not if but how soon. And once it is integrated, the industry’s biggest challenge—process emissions—will finally have a solution.

ABOUT THE AUTHOR:
Nathan Ashcroft, Director, Strategic Growth, Business Development, and Low Carbon Solutions – Stantec, holds expertise in project management, strategy, energy transition, and extensive international leadership experience.

Continue Reading

Concrete

The Green Revolution

Published

on

By

Shares



MM Rathi, Joint President – Power Management, Shree Cement, discusses the 3Cs – cut emissions, capture carbon and cement innovation – that are currently crucial for India’s cement sector to achieve Net Zero goals.

India’s cement industry is a backbone of growth which stand strong to lead the way towards net zero. From highways and housing to metros and mega cities, cement has powered India’s rise as the world’s second-largest producer with nearly 600 million tonnes annual capacity. Yet this progress comes with challenges: the sector contributes around 5 per cent of national greenhouse gas emissions, while also facing volatile fuel prices, raw material constraints, and rising demand from rapid urbanisation.
This dual role—driving development while battling emissions—makes cement central to India’s Net Zero journey. The industry cannot pause growth, nor can it ignore climate imperatives. As India pursues its net-zero 2070 pledge, cement must lead the way. The answer lies in the 3Cs Revolution—Cut Emissions, Cement Innovation, Capture Carbon. This framework turns challenges into opportunities, ensuring cement continues to build India’s future while aligning with global sustainability goals.

Cut: Reducing emissions, furnace by furnace
Cement production is both energy- and carbon-intensive, but India has steadily emerged as one of the most efficient producers worldwide. A big part of this progress comes from the widespread use of blended cements, which now account for more than 73 per cent of production. By lowering the clinker factor to around 0.65, the industry is able to avoid nearly seven million tonnes of CO2 emissions every year. Alongside this, producers are turning to alternative fuels and raw materials—ranging from biomass and municipal waste to refuse-derived fuels—to replace conventional fossil fuels in kilns.
Efficiency gains also extend to heat and power. With over 500 MW of waste heat recovery systems already installed, individual plants are now able to generate 15–18 MW of electricity directly from hot exhaust gases that would otherwise go to waste. On the renewable front, the sector is targeting about 10 per cent of its power needs from solar and wind by FY26, with a further 4–5 GW of capacity expected by 2030. To ensure that this renewable power is reliable, companies are signing round-the-clock supply contracts that integrate solar and wind with battery energy storage systems (BESS). Grid-scale batteries are also being explored to balance the variability of renewables and keep kiln operations running without interruption.
Even logistics is being reimagined, with a gradual shift away from diesel trucks toward railways, waterways, and CNG-powered fleets, reducing both emissions and supply chain congestion. Taken together, these measures are not only cutting emissions today but also laying the foundation for future breakthroughs such as green hydrogen-fueled kiln operations.

Cement: Innovations that bind
Innovation is transforming the way cement is produced and used, bringing efficiency, strength, and sustainability together. Modern high-efficiency plants now run kilns capable of producing up to 13,500 tonnes of clinker per day. With advanced coolers and pyro systems, they achieve energy use as low as 680 kilocalories per kilogram of heat and just 42 kilowatt-hours of power per tonne of clinker. By capturing waste heat, these plants are also able to generate 30–35 kilowatt-hours of electricity per tonne, bringing the net power requirement down to only 7–12 kilowatt-hours—a major step forward in energy efficiency.
Grinding technology has also taken a leap. Next-generation mills consume about 20 per cent less power while offering more flexible operations, allowing producers to fine-tune processes quickly and reduce energy costs. At the same time, the use of supplementary cementitious materials (SCMs) such as fly ash, slag and calcined clays is cutting clinker demand without compromising strength. New formulations like Limestone Calcined Clay Cement (LC3) go even further, reducing emissions by nearly 30 per cent while delivering stronger, more durable concrete.
Digitalisation is playing its part as well. Smart instrumentation, predictive maintenance, and automated monitoring systems are helping plants operate more smoothly, avoid costly breakdowns, and maintain consistent quality while saving energy. Together, these innovations not only reduce emissions but also enhance durability, efficiency, and cost-effectiveness, proving that sustainability and performance can go hand in hand.

Carbon: Building a better tomorrow
Even with major efficiency gains, most emissions from cement come from the chemical process of turning limestone into clinker—emissions that cannot be avoided without carbon capture. To address this, the industry is moving forward on several fronts. Carbon Capture, Utilisation and Storage (CCUS) pilots are underway, aiming to trap CO2 at the source and convert it into useful products such as construction materials and industrial chemicals.
At the same time, companies are embracing circular practices. Rainwater harvesting, wastewater recycling, and the use of alternative raw materials are becoming more common, especially as traditional sources like fly ash become scarcer. Policy and market signals are reinforcing this transition: efficiency mandates, green product labels and emerging carbon markets are pushing producers to accelerate the shift toward low-carbon cements.
Ultimately, large-scale carbon capture will be essential if the sector is to reach true net-zero
cement, turning today’s unavoidable emissions into tomorrow’s opportunities.

The Horizon: What’s next
By 2045, India’s cities are expected to welcome another 250 million residents, a wave of urbanisation that will push cement demand nearly 420 million tonnes by FY27 and keep rising in the decades ahead. The industry is already preparing for this future with a host of forward-looking measures. Trials of electrified kilns are underway to replace fossil fuel-based heating, while electric trucks are being deployed both in mining operations and logistics to reduce transport emissions. Inside the plants, AI-driven systems are optimising energy use and operations, and circular economy models are turning industrial by-products from other sectors into valuable raw materials for cement production. On the energy front, companies are moving toward 100 per cent renewable power, supported by advanced battery storage to ensure reliability around the clock.
This vision goes beyond incremental improvements. The 3Cs Revolution—Cut, Cement, Carbon is about building stronger, smarter, and more sustainable foundations for India’s growth. Once seen as a hard-to-abate emitter, the cement sector is now positioning itself as a cornerstone of India’s climate strategy. By cutting emissions, driving innovations and capturing carbon, it is laying the groundwork for a net-zero future.
India’s cement sector is already among the most energy-efficient in the world, proving that growth and responsibility can go hand in hand. By cutting emissions, embracing innovation, and advancing carbon capture, we are not just securing our net-zero future—we are positioning India as a global leader in sustainable cement.

ABOUT THE AUTHOR:
MM Rathi, Joint President – Power Management, Shree Cement, comes with extensive expertise in commissioning and managing over 1000 MW of thermal, solar, wind, and waste heat power plants.

Continue Reading

Trending News