Concrete
Technology: A Transformative Force
Published
1 year agoon
By
admin
Asok K Dikshit, Richa Mazumder, Sanjeev K. Chaturvedi and LP Singh, National Council for Cement and Building Materials (NCB), give a detailed account of the technological changes that are leading the Indian cement industry towards a sustainable and environmentally conscious growth path.
The role of technology in achieving sustainability in cement plants is instrumental as it is already facing sustainability issues due to a number of factors like energy and water consumption, material and resource management, reduction in greenhouse gases (GHG) emissions, waste management, etc. The cement sector is under increasing pressure to adopt innovative technological solutions that balance economic growth with environmental responsibility. In this context, various technological advancements have emerged to achieve sustainability goals in cement manufacturing.
The driving technologies to achieve sustainability in the cement sector are advanced process control systems powered by artificial intelligence (AI) and machine learning (ML), real-time monitoring and optimisation of production parameters and the application of Industry 4.0 in cement plants, which is proving to be a transformative force, propelling the industry toward greater sustainability. Industry 4.0, characterised by the integration of digital technologies, automation and data-driven processes, addresses the complex challenges associated with cement production. Carbon capture and storage technologies address the significant carbon footprint of cement production. Digital twins and simulations allow for virtual testing and refinement of processes, minimising trial-and-error approaches and identifying opportunities for efficiency improvements. Emission monitoring and control technologies, including continuous monitoring systems and advanced sensors, ensure compliance with environmental regulations and contribute to improved air quality. Circular economy practices are enhanced through technology, supporting the recycling and reuse of by-products and optimising material flows. Water management is made more sustainable through automated systems and AI-driven analytics, minimising the industry’s impact on water resources. Stakeholder engagement and transparency are facilitated by digital platforms, fostering collaboration and awareness about sustainability initiatives. Remote monitoring and maintenance technologies reduce the environmental footprint associated with on-site activities. Thus in this paper, driving technology that promotes efficiency, reduces environmental impact, and contributes to a more responsible and resilient industry has been discussed in detail.
Optimising technology
Cement manufacturers should strategically incorporate key technologies to enhance operational efficiency and product quality to meet sustainability goals. The application of Industry 4.0 in cement plants represents a transformative shift towards intelligent, interconnected, and data-driven manufacturing [1-2]. This concept involves the integration of advanced digital technologies to optimise various facets of cement production. Smart sensors and the Internet of Things (IoT) are strategically deployed throughout the plant, providing real-time data on equipment performance, energy consumption, and environmental conditions. Automation and control systems, equipped with artificial intelligence and machine learning, enable advanced process control, ensuring precise monitoring and adjustment of production parameters. Digital twins, virtual replicas of physical processes, facilitate simulation and optimisation, allowing for testing and refining of operations in a virtual environment. Big data analytics processes the vast amounts of data generated during production, offering valuable insights for decision-making and continuous improvement. By the implementation of Industry 4.0 Cement production can in a number of ways as shown in Fig. 1.
Equipping cement industry with innovative technologies positions enables them to thrive in the evolving industrial landscape, embracing efficiency, quality, and sustainability. In driving sustainability in the cement industry technology plays a crucial role by enabling more efficient processes, improving overall resource management and reducing environmental impact. Here are several ways in which technology contributes to sustainability in the
cement industry:
Energy efficiency: Technology plays a pivotal role in enhancing energy efficiency in cement plants, a sector known for its substantial energy consumption. Data science is often used in the energy optimisation area. Advanced process control systems, powered by machine learning and artificial intelligence, are positioned to optimise the intricate processes involved in cement production by suggesting the most efficient operating conditions for equipment, thereby reducing energy costs and environmental impact. Digitalisation allows for better monitoring of equipment’s energy consumption. Cement industry can take corrective actions to reduce energy wastage and carbon footprint by identifying the energy consumption patterns of equipment under faulty conditions, thereby achieving significant cost reductions over time [3]. Furthermore, technology makes possible the integration of waste heat recovery systems, capturing and repurposing thermal energy generated during the production process.
Alternative fuels and raw materials: The cement sector is responsible for a significant portion of greenhouse gas emissions and is one of the largest consumers of energy globally. The use of alternative fuels, such as biomass, waste materials and municipal solid waste, can reduce the reliance on fossil fuels, bring down greenhouse gas emissions, and will enhance energy efficiency. This has been made possible by progress in technology, including the development of specialised equipment for handling and processing these fuels. For example, rotary kilns can be modified to handle different types of fuels, and preheaters can be designed to optimise the combustion of alternative fuels as shown in Fig.2.
The use of alternative fuels also has economic benefits by reducing the cost of energy and raw materials, and providing opportunities for waste reduction and recycling. Automation technologies ensure precise dosing and combustion of alternative fuels, promoting cleaner energy sources and reducing the industry’s reliance on fossil fuels.
Carbon Capture, Utilisation and Storage (CCUS): Addressing the significant carbon footprint associated with cement production requires innovative solutions, and technology provides a pathway through carbon capture, utilisation and storage (CCUS). These technologies contribute to the industry’s efforts to decarbonise and mitigate its environmental impact. CCUS technology captures CO2 emissions from cement plants and stores them underground or uses them in other industrial processes.
It has several benefits, which include
(a) the reduction of greenhouse gas emissions,
(b) improved energy efficiency, and
(c) the creation of new revenue streams.
However, carbon capture, utilisation and storage technology is still in the initial stages of development, and significant investment is required to make it commercially viable.
Digital twins and simulation: The concept of digital twins, virtual replicas of physical processes and equipment, is gaining prominence in the quest for sustainability in cement manufacturing. In the cement sector the digital twin can allow the cement manufacturers to effectively mirror their production process through a well-designed digital model, and then they can optimise it by using machine learning and artificial intelligence. The digital twins can imitate the cement production process in a dynamic as well as simplified way. As a result, it can create scenarios that can effortlessly change with variables. The finest part of the digital twin is that it can suggest optimal and efficient equipment configurations that can help to increase output target [4].
Emission Monitoring and Control: Continuous monitoring of emissions is critical for regulatory compliance and sustainable practices. Technology, such as continuous emission monitoring systems (CEMS), provides real-time data on air pollutants generated during cement production. AI algorithms analyse this data to detect patterns, identify sources of emissions and optimise control mechanisms. Advanced sensors and monitoring devices ensure the effective operation of emission abatement technologies, such as electrostatic precipitators and selective catalytic reduction (SCR) systems as shown in Fig.3. These technologies contribute to improved air quality and reduced environmental impact, aligning with the industry’s commitment to sustainability[5].
Circular economy practices: Incorporating circular economy practices is essential for minimising waste and optimising resource use in cement production. Technology facilitates the recycling and reuse of by-products, such as fly ash and slag, in cement manufacturing. Automation systems streamline the collection and processing of these by-products, reducing reliance on primary raw materials. AI and ML algorithms optimise material flows, identifying opportunities for waste minimisation and resource recovery. Blockchain technology enhances transparency in the supply chain, verifying the authenticity and sustainability of raw materials sourced from various suppliers. By embracing circular economy practices, cement plants contribute to resource conservation and environmental sustainability.
Water management: Sustainable water management is a crucial aspect of cement plant operations, particularly in regions facing water scarcity. Technology aids in the implementation of water-efficient processes and recycling systems. Automated control systems adjust water usage based on real-time needs, and sensor-based technologies monitor water quality. AI-driven analytics help identify opportunities for water conservation and improve overall water management strategies. By optimising water usage and implementing advanced technologies, cement plants mitigate their environmental impact on water resources and contribute to sustainable water stewardship [4-5].
Stakeholder engagement and transparency: Technology enhances stakeholder engagement and transparency, fostering collaboration between cement manufacturers, suppliers, regulators, and local communities. Digital platforms and communication tools enable efficient and transparent communication about sustainability initiatives. Social media and online platforms provide avenues for sharing information and engaging with stakeholders, creating awareness about the industry’s commitment to sustainability. Technology ensures that stakeholders are informed about environmental practices,corporate responsibility, and progress towards sustainability goals. This transparency builds trust and accountability, essential elements for achieving long-term sustainability objectives.
Remote monitoring and maintenance: Advancements in connectivity and remote monitoring technologies offer opportunities for optimising maintenance strategies and reducing the environmental impact associated with on-site activities. Remote monitoring allows for off-site monitoring of equipment and processes, providing real-time insights into performance as shown in Fig.4. Predictive maintenance strategies, facilitated by AI and ML algorithms, optimise equipment performance and extend the lifespan of machinery. By leveraging remote monitoring and maintenance technologies, cement plants enhance operational efficiency, reduce downtime and minimise the environmental footprint associated with traditional maintenance practices.
Future trends and challenges: While current technologies contribute significantly to sustainability in cement plants, future trends and challenges are shaping the industry’s trajectory. Advanced robotics, for example, are being explored for hazardous tasks, reducing risks to human health and safety. Integration of AI into supply chain management is expected to optimise logistics, reduce waste and enhance overall efficiency. Additionally, the industry is exploring innovative low-carbon and carbon-negative cements as part of its commitment to achieving net-zero emissions. However, challenges such as the initial capital investment required for technology adoption and ensuring alignment with local regulatory frameworks must be addressed to realise the full potential of these advancements.
Conclusion
In conclusion, technology is a driving force in the journey towards sustainability in cement plants. From energy-efficient processes and alternative materials to carbon capture and circular economy practices, technology is instrumental in reshaping an industry with historically significant environmental impact. Cement manufacturers are embracing innovative solutions, leveraging AI, ML, and other digital advancements to enhance operational efficiency, reduce carbon emissions and minimise resource consumption. As the industry continues to evolve, the integration of technology will play a central role in achieving the delicate balance between economic viability and ecological responsibility. Cement plants that invest in and implement these technologies not only ensure their long-term competitiveness but also contribute to a more sustainable and environmentally conscious future
Acknowledgement: The authors wish to acknowledge the Director General of National Council for Cement and Building Materials (NCB) for giving permission for publication and DPIIT, Ministry of Commerce and Industry, GOI through various R&D projects support financial for sustainable development of cement industry. They also acknowledge all scientific and technical staff of NCB for cooperation through R&D work for sustainability of cement industry related projects.
Conflict of interest: The authors have no conflicts of interest financially and ethically to publish in this review work.
References
- The 21st-century cement plant: Greener and more connected, September 16, 2020 | Article, McKinsey & Company Eleftherios Charalambous, Thomas Czigler, Ramez Haddadin, and Patrick Schulze
- Why Cement Producers Need to Embrace Industry 4.0, Article, December 07, 2018, Sumit Gupta, Suresh Subudhi, and Ileana Nicorici
- Article, Exclusive Interview: Nanoprecise Co-Founder Talks about the Importance of Technology in Cement Production, Prashant Verma, Date: 23-08-2023, Place: Delhi, India
- ECUBIX, Blog, why do Cement Producers Need to Accept
Industry 4.0? - ClipOn, Article, Advanced Tech to Improve Efficiencis in Cement Plant Emissions March 02, 2023
ABOUT THE AUTHOR:
Ashok K Dikshit, General Manager, NCB has over 28 years rich R&D experience.
Richa Mazumder, Manager, NCB has 13 years of experience in the field of geology, mining, raw material, and waste utilisation in cement manufacturing.
Sanjeev K Chaturvedi, Joint Director, NCB, has over 37 years of experience in the areas of research planning and execution.
LP Singh, Director General, NCB, has over 30 years of work experience committed towards advancing scientific knowledge and translating research into practical applications.


An invigorating discussion amongst industry experts, on digital transformation, sustainability and cybersecurity, threw interesting insights.
The cement industry is at a crucial juncture, with digital transformation, sustainability, and automation shaping its future. The panel discussion explored key points on digitalisation, sustainability and automation, emphasising the importance of a multidisciplinary approach to modern cement manufacturing.
The webinar was moderated by Dr SB Hegde, Professor, Jain College of Engineering & Technology, Hubli; and Visiting Professor, Pennsylvania State University, USA.
Speakers included:
- Dr Hemantkumar Aiyer, VP & Head R&D, Nuvoco Vistas Corp
- Dr Raju Goyal, Executive President, Chief Technical and Sustainability Officer,
UltraTech Cement
- Dr Rizwan Sabjan, Head – Global Sales and Proposals, Process Control and Optimisation, FLSmidth Cement
- Prosenjit Dutta, Director Operations, PS Digitech-HR India
- Raghu Vokuda, Chief Digital Officer,
JSW Cement
- Sachin Vaidya, Regional GM – Digital, Process Industries, ABB
Role of digital transformation
Dr Hegde emphasised the need for integrating emerging technologies with a multidisciplinary approach to enhance cement plant efficiency. He highlighted that “understanding of systems and how to integrate them” is essential for maximising the benefits of digital tools.
Sabjan echoed this sentiment, stressing that cement plants need to embrace a cultural and mindset shift to fully leverage digital technologies. He pointed out, “Software can do wonders for the plant, but only if the workforce understands and implements it effectively.” He warned against isolated implementations, advocating for a holistic approach where departments like OT, quality control and automation work together.
Sustainability: The road ahead
With sustainability becoming a global priority, cement manufacturers must adapt to new environmental regulations and carbon reduction goals. Dr Hegde posed a critical question: “How is the cement industry moving towards sustainability, and how can plants prepare for these changes?”
Sabjan responded by highlighting the importance of long-term planning and commitment. “Often, discussions happen, but after two months, we forget about them and restart from scratch. This approach will not work. We need a structured, goal-oriented plan with defined KPIs,” he said. Sabjan emphasised the need for a systematic approach, focusing on tangible metrics such as energy savings. “If a plant aims to improve energy efficiency by five percent, it must set this as a goal and track progress,” he suggested.
The discussion also underscored the need for strong leadership to drive digital adoption. “A motivated team and a dynamic leader can make all the difference,” Dr Hegde noted.
Enhancing durability with digital tools
Strength and durability remain critical concerns in cement production. Goyal explained, “Machine learning-based lab technologies enable predictive analysis, allowing manufacturers to forecast 28-day, 7-day, and 1-day strengths before the material leaves the mill.” He also emphasised the importance of soft sensors, which “help predict strength and optimise mix design before production.”
He elaborated on the role of XRF/XRD analysis: “These tools provide elemental and mineralogical insights, allowing for quick adjustments to raw materials and ensuring consistent quality.” Furthermore, digital twins are revolutionising cement quality optimisation. “They allow us to simulate and test mix designs before implementation, reducing errors and optimising durability.”
Cybersecurity risks in IT-OT integration
As cement plants become increasingly digitalised, cybersecurity threats pose significant risks. Vaidya expressed concern that many manufacturers underestimate cybersecurity risks. “As a technology provider, I often struggle to convince cement manufacturers of the importance of cybersecurity. Some benefits are intangible but essential for plant security.”
He outlined major threats, including malware attacks, unauthorised network access, and operational disruptions. “Preventive measures include secure data transactions, network monitoring, and regular cybersecurity training for staff to minimise insider threats,” he said.
He urged cement companies to take cybersecurity seriously: “As digital transformation advances, cybersecurity is not an option—it is a necessity. Without proper security protocols, cement plants risk cyberattacks that could halt production.”
Dr Hegde agreed, adding, “People often ignore cybersecurity until they experience financial loss. Awareness must be proactive, not reactive.”
Dutta stated, “Advanced process control (APC) is a game-changer for cement manufacturing, allowing us to stabilise operations, optimise fuel efficiency, and reduce energy consumption through real-time data insights.”
He emphasised the transformative impact of real-time data analytics and advanced process control (APC) in cement manufacturing. He highlighted that APC enables manufacturers to optimise raw mix design, fuel efficiency and kiln operations through data-driven decision-making. By continuously monitoring critical parameters, APC minimises process variations, improves stability, and reduces energy consumption, leading to cost savings and enhanced productivity. Additionally, he stressed the role of predictive maintenance in preventing equipment failures, extending machinery lifespan and minimising downtime, ultimately ensuring consistent quality and operational efficiency in cement production.
Will Indian plants become fully autonomous?
With AI, robotics and digital twins transforming global cement production, the question arises: Can Indian cement plants become fully autonomous within the next 5–10 years?
Vokuda was skeptical about complete automation in the near future. “Indian cement plants will see significant automation, but full autonomy remains unlikely within a decade. A hybrid model, combining AI-powered decision-making with human oversight, is more practical.”
He highlighted key challenges: “Unlike developed nations, India’s low labour costs may make full automation less attractive. Additionally, digital twin technology in India is still in its early stages, focusing more on process twins than asset twins.”
Another challenge is data management. “AI-ML models require vast amounts of data, which necessitates ultra-low latency networks like 5G and edge computing. We are not yet at that level of technological maturity,” he explained.
Despite these hurdles, he remains optimistic: “While full automation may take longer, the industry will continue to evolve with advancements in digital twins, real-time analytics, and AI-driven insights.”
Conclusion
Experts agree that while technology holds immense potential, its successful implementation depends on cultural shifts, strong leadership, and structured execution.
Key takeaways from the discussion include:
- Integration of digital tools: Multidisciplinary collaboration is essential for successful implementation.
- Sustainability goals: Defined KPIs and a long-term approach are crucial.
- Quality optimisation: Machine learning, real-time analysis, and digital twins are improving cement strength and durability.
- Cybersecurity: As digital transformation progresses, cement plants must prioritise cybersecurity.
- Automation: While full autonomy is unlikely soon, AI and digital tools will play a growing role in decision-making.
As the industry moves forward, cement manufacturers must embrace technological advancements while ensuring resilience against cybersecurity threats and operational challenges. With the right strategies, India’s cement sector can achieve greater efficiency, sustainability, and innovation in the years to come.
ICR’s virtual panel discussion was supported by FLSmidth Cement as the Presenting Partner and ABB as the Gold Partner.
Concrete
The Science and Application of Grinding Aids
Published
13 hours agoon
March 11, 2025By
admin
Dr SB Hegde discusses the importance of grinding aids as essential chemical additives that enhance cement grinding efficiency, reduce energy consumption and improve overall cement quality in the concluding part of his article.
Grinding aids represent a critical segment of the cement additives market, driven by their ability to enhance grinding efficiency, reduce energy consumption, and improve cement quality. The market dynamics of grinding aids vary significantly across regions, influenced by economic growth, cement production capacities and regulatory environments.
Global market size and growth projections
The global grinding aids market was valued at approximately US $ 1.2 billion in 2023 and is expected to grow at a CAGR of 5.5 per cent from 2023 to 2030, reaching nearly US $ 1.8 billion by 2030.
This growth is fueled by the increasing focus on energy efficiency and sustainable cement production practices worldwide.
Rapid urbanisation and infrastructure development, especially in emerging economies, are major growth drivers. Cement producers are increasingly adopting grinding aids to address rising energy costs, reduce carbon footprints, and improve production efficiencies. For instance, grinding aids have been shown to lower energy consumption by up to 25 per cent, making them a cost-effective solution for plants facing energy price volatility.
Regional trends: Developed vs. developing markets
- Developed markets: Europe and North America represent mature markets for grinding aids. Europe, driven by stringent environmental regulations such as the EU Emissions Trading System (EU ETS), has witnessed a steady rise in the adoption of low-VOC and eco-friendly grinding aids. Leading players in these markets emphasise sustainability and compliance with regulatory frameworks, contributing to steady demand.
In North America, the focus is on productivity enhancements in large-scale cement plants, with grinding aids used to achieve finer cement grades and support blended cement production. - Developing markets: Emerging economies in Asia-Pacific, the Middle East, and Africa exhibit the fastest growth in grinding aid adoption. The Asia-Pacific region accounted for over 40 per cent of global grinding aid consumption in 2023, with countries like India, China, and Vietnam leading the way. The rapid urbanisation, rising construction activity, and increasing cement production capacities in these regions are
driving demand.
In Africa, grinding aids are gaining traction as manufacturers focus on optimising production costs in an environment of fluctuating raw material and energy prices.
Market size and adoption rate in India
India, the world’s second-largest cement producer, offers a significant growth opportunity for grinding aids. In 2023, the grinding aids market in India was valued at US$ 150 million, with a projected growth rate of over seven per cent CAGR through 2030. The adoption rate remains relatively low at smaller plants, which prioritise cost-saving over efficiency gains. However, leading manufacturers and integrated cement plants are increasingly embracing grinding aids, particularly for blended cement production.
Blended cements, such as Portland Pozzolana Cement (PPC) and Portland Slag Cement (PSC), account for more than 70 per cent of the Indian cement market. Grinding aids tailored for fly ash and slag-blended cements are in high demand, with some products delivering up to a 15 per cent increase in mill throughput and improved early strength development.
Emerging trends
- Eco-friendly formulations: The growing demand for sustainable grinding aids has prompted companies to develop low-VOC and biodegradable alternatives.
- Customised solutions: Grinding aid formulations are increasingly tailored to address specific raw material challenges and production processes, such as VRMs or high-SCM cement blends.
- Digitalisation: Smart dosing systems integrated with real-time mill monitoring are enabling optimised grinding aid usage, ensuring consistent performance across diverse production conditions.
Bridging the Trust Gap
For cement plant operators, the quality and performance of grinding aids often appear as a ‘black box.’ The lack of transparency in the formulation and quality checks of these additives has historically limited trust and widespread adoption. Grinding aid manufacturers must address this issue by fostering transparency and providing detailed insights into the testing and validation of their products. This would not only instill confidence but also strengthen collaboration with cement companies.
Grinding aid producers should provide robust documentation outlining the physical and chemical characteristics of their formulations, supported by consistent performance data from laboratory tests, industrial-scale trials, and third-party validations. This transparency is essential to demystify grinding aids’ performance and demonstrate their effectiveness across diverse operational conditions.
Emerging innovations in grinding aid chemistry
The path forward for grinding aid manufacturers lies in innovation. Recent research highlights the potential of hybrid formulations combining traditional amines and glycols with advanced polymeric additives like polycarboxylate ethers (PCEs). These hybrid products can address specific challenges such as improving grindability in blended cements containing fly ash or slag, where traditional additives often underperform. Nano-engineering of grinding aids, incorporating nanoparticles for optimised dispersion and enhanced hydration kinetics, represents another promising avenue.
Leveraging AI for optimisation
The integration of artificial intelligence (AI) and machine learning tools into grinding aid application systems is reshaping the cement industry. AI-driven systems enable real-time optimisation of grinding aid dosages by analysing mill performance data, such as power consumption, throughput, and particle size distribution. For example, a cement plant in Europe reported a 15 per cent reduction in specific energy consumption and a 10 per cent
increase in mill throughput using AI-optimised dosing systems. This innovation reduces operational variability and improves the predictability of grinding aid performance.
Expectations from grinding aid producers
The cement industry demands more than just products; it seeks partnerships with grinding aid manufacturers. Key expectations include:
1. Customised formulations: Tailored products designed for specific raw materials, clinker compositions, and mill configurations to maximise efficiency and performance.
2. Eco-friendly additives: Grinding aids with low volatile organic compound (VOC) emissions and biodegradable ingredients that align with the industry’s sustainability goals.
3. Comprehensive technical support: On-site training and technical services to help plant operators understand grinding aid chemistry, application techniques and performance optimisation strategies.
4. Advanced quality control systems: Transparent testing protocols, including real-time quality assurance of grinding aids delivered to cement plants. Regular reporting of performance consistency through defined KPIs like grindability index and Blaine fineness is essential.
Role of cement companies in promoting grinding aid usage
Cement producers must take an active role in promoting grinding aid adoption. Sharing success stories of energy savings, improved mill performance, and enhanced cement quality can encourage industry-wide adoption. For example, an Indian cement manufacturer recently documented a 20 per cent improvement in 28-day compressive strength and a 10 per cent reduction in energy consumption with glycol-based additives, driving interest among peers.
Moreover, collaborative initiatives between cement producers and grinding aid manufacturers, such as joint research programs and knowledge-sharing forums, could lead to significant advancements in grinding technology. Organisations like the Cement Manufacturers’ Association of India and the World Cement Association can facilitate these partnerships.
Conclusion
Grinding aids play a pivotal role in modern cement manufacturing, offering significant advantages in energy efficiency, mill productivity and cement quality. Despite their transformative potential, adoption remains inconsistent due to challenges like raw material variability, operational concerns and limited trust in product formulations. Transparency and collaboration between grinding aid producers and cement manufacturers are critical to addressing these issues and fostering broader acceptance.
Innovations in grinding aid chemistry, including hybrid formulations and nano-engineered additives, have unlocked new possibilities for enhancing grindability and hydration performance. Meanwhile, advancements in artificial intelligence and data analytics have opened avenues for real-time optimisation, ensuring precise dosing and measurable cost savings. These developments underscore the evolving synergy between technology and grinding aid applications.
Globally, the grinding aid market is poised for growth, with developed regions leading adoption and emerging economies like India offering immense potential driven by infrastructure demands. However, tapping into these opportunities requires grinding aid producers to align with industry expectations. Cement manufacturers expect customised solutions, eco-friendly formulations, technical support and transparent quality assurance processes to build trust and confidence.
The path forward demands a collaborative approach. Grinding aid producers must continue investing in research and innovation while actively engaging with the cement industry to educate stakeholders and demonstrate measurable benefits. Concurrently, the cement industry must champion adoption through case studies, knowledge sharing, and regulatory support. Together, these efforts will ensure grinding aids fulfill their promise of enabling a more efficient, sustainable, and resilient cement manufacturing sector.
References
1. Gao, J., Zhang, S., Wang, X., & Ma, B. (2011). “Effect of organic grinding aids on cement properties and the analysis via liquid chromatography-mass spectrometry.” Construction and Building Materials, 25(8), 3600–3605.
2. Amritphale, S. S., Patel, M., & Singh, R. (2017). “Grinding aids: A study on their mechanism of action in cement grinding processes.” Indian Cement Review.
3. Cembureau – The European Cement Association. “Cement grinding optimisation through grinding aids.” Industry Report, 2023.
4. Flatt, R. J., & Schober, I. (2012). “Superplasticisers and the rheology of concrete.” International Journal of Cement Chemistry, 64(4), 91–109.
5. Mejeoumov, G. G. (2007). “Improved cement quality and grinding efficiency by means of closed mill circuit modeling.” PhD Dissertation, Texas A&M University.
6. Global Cement. “Advances in grinding aids: Market trends and new technologies.” Published October 2024.
7. Statista. “Global grinding aids market size and forecast (2023-2030).” Published March 2024.
8. Pal, B. K., & Rath, P. C. (2020). “Influence of grinding aids on particle size distribution, strength, and hydration of cement.” Journal of Materials Science and Applications, 45(2), 234–246.
9. Indian Cement Review. “Emerging market scope of grinding aids in India.” Published July 2023.
10. Zhang, H., Li, X., & Zhao, Y. (2022). “The role of grinding aids in improving cement hydration kinetics.” Journal of Advanced Materials Science, 17(6), 527–540.
11. Sika AG. “Technical Report on Polycarboxylate Ether (PCE) based grinding aids.” Published 2022.
12. Cement and Concrete Research. “AI-driven optimisation in cement grinding: Case studies and industrial applications.” Volume 152, 2023.
13. Taylor, H. F. W. (1997). Cement Chemistry (2nd Edition). Thomas Telford Publishing.
14. Indian Bureau of Mines (IBM). “Market trends and challenges in cement manufacturing.” Annual Report, 2024.
15. World Cement Association. “Sustainability in grinding aids and cement additives.” Published 2024.
About the author:
Dr SB Hegde, a global cement industry leader with over 30 years of experience, is a Professor at Jain College of Engineering, India, and a Visiting Professor at Pennsylvania State University, USA. Recipient of the ‘Global Visionary’ award, Dr Hegde advises India’s think tank CSTEP on hydrogen usage in cement and consults for major cement companies. He also serves on expert panels of key industry bodies and journals globally.

Efficient bulk material handling has always been critical for seamless production, cost reduction and environmental compliance. Kanika Mathur delves into advanced automation, smart sensors and sustainable transport solutions that are key to overcoming challenges.
The cement industry is a cornerstone of infrastructure development, contributing significantly to economic growth. However, cement production involves the handling and transportation of vast quantities of raw materials such as limestone, clay, iron ore, fly ash and gypsum, as well as the final product—cement itself. Efficient bulk material handling (BMH) systems are crucial in ensuring uninterrupted production, reducing operational costs, minimising material wastage and improving overall efficiency.
In an industry where material losses, dust emissions, and energy consumption are major concerns, advancements in bulk material handling technology are playing a vital role in optimising operations. Automated and energy-efficient bulk handling solutions, such as pneumatic conveying systems, belt conveyors and stacker-reclaimer systems, are transforming the way cement plants manage their raw materials and finished products. This article explores the key aspects of bulk material handling in the cement industry, the latest technological advancements, and the challenges and opportunities in this space.
Importance of bulk material handling
Cement manufacturing requires the continuous movement of raw materials from mines and quarries to processing plants, followed by the transportation of the finished product to storage facilities and distribution networks. Bulk material handling systems ensure that this process runs smoothly, reducing downtime and enhancing productivity.
According to the Global Cement Report (2023), inefficient material handling contributes to 5 – 10 per cent of total cement production losses in India. Additionally, poor handling practices lead to high levels of dust pollution, which is a significant environmental and health concern. With cement production in India expected to reach 500 million metric tonnes by 2025, the demand for advanced and automated material handling systems is increasing rapidly.
Jacob Jose, CEO and Managing Director, Methods India, says, “With our advanced pipe conveyors, downhill conveyors and cross-country conveyors, we have revolutionised the way cement plants transport raw materials. Our technology helps reduce operational costs, minimise environmental impact and improve energy efficiency. Over the years, we have observed a positive impact in the industry, particularly with the growing adoption of pipe conveyors and cross-country conveyors, which have proven to be more efficient and environmentally friendly alternatives to traditional transport methods.”
Key bulk material handling technologies
1. Belt conveyors: The workhorse of cement plants
Belt conveyors are one of the most widely used bulk material handling solutions in the cement industry. They transport raw materials, clinker and finished cement over long distances within the plant and to storage facilities. Modern high-capacity belt conveyors can handle loads exceeding 10,000 tonnes per hour, significantly improving efficiency.
- Advantages: High efficiency, low operational costs, and reduced manual intervention.
- Challenges: Belt wear and tear, spillage, and maintenance requirements.
- Technological advancement: The introduction of heat-resistant and fire-retardant conveyor belts has improved durability, while sensor-based predictive maintenance systems help detect belt failures before they occur.
2. Stacker and reclaimer systems: Optimising storage and retrieval
Stackers and reclaimers are essential for managing bulk raw materials in cement plants. Stackers pile materials such as limestone, coal, and gypsum, while reclaimers retrieve them for processing. These systems ensure homogeneous blending, reducing material variability and enhancing cement quality.
- Latest innovation: Automated stacker and reclaimer systems with AI-driven optimisation help maximise storage space and minimise
retrieval time. - Efficiency gains: Newer stacker-reclaimer designs allow for material recovery rates of over 90 per cent, reducing wastage and ensuring a steady feed to the production line.
3. Pneumatic conveying systems: Dust-free material transfer
Pneumatic conveying systems use air pressure or vacuum systems to move powdered and granular materials such as fly ash, cement and kiln dust through pipelines. They are particularly useful in reducing dust emissions and preventing material contamination.
- Advantages: Dust-free operation, reduced environmental impact, and minimal maintenance.
- Industry adoption: Many Indian cement plants are shifting from mechanical conveyors to high-pressure pneumatic conveying systems to comply with pollution control regulations set by the Central Pollution Control Board (CPCB).
4. Screw conveyors and bucket elevators: Compact and versatile solutions
- Screw conveyors: Used for short-distance material movement, particularly for handling fine and powdered materials such as cement, gypsum, and pulverised coal.
- Bucket elevators: Ideal for vertical material transport, commonly used for lifting raw meal, cement, and clinker to storage silos.
- Technological upgrades: The introduction of wear-resistant alloy buckets and variable-speed drives has enhanced the reliability and efficiency of these systems.
Challenges in bulk material handling
Despite significant advancements, several challenges continue to hinder bulk material handling efficiency in cement plants:
1. Material spillage and dust emissions
Material spillage and dust emissions pose environmental, health, and financial challenges. Uncontrolled dust emissions from conveyors, transfer points, and storage facilities not only violate regulatory norms but also lead to material losses. Studies show that up to three per cent of bulk materials are lost due to improper handling in Indian cement plants.
- Solution: Enclosed conveyors, dust suppression systems, and bag filters help reduce dust pollution.
2. High energy consumption
Bulk material handling systems consume a significant amount of energy, especially in large cement plants where materials need to be transported over long distances. According to a CII (Confederation of Indian Industry) report (2023), energy costs account for nearly 40 per cent of total production expenses in cement manufacturing.
- Solution: Energy-efficient conveyor motors, regenerative braking systems, and smart automation can help reduce power consumption.
3. Wear and tear of equipment
Continuous exposure to abrasive materials like limestone and clinker leads to significant wear and tear in bulk material handling equipment, increasing maintenance costs and downtime.
- Solution: The use of wear-resistant liners, ceramic-coated conveyor belts, and automated lubrication systems extends equipment life and reduces maintenance downtime.
4. Logistics and transportation bottlenecks
Moving bulk materials from cement plants to distribution centers requires an efficient logistics network. Rail and road congestion, inadequate infrastructure, and high transportation costs often result in delays and increased operational expenses.
- Solution: Integrated bulk terminals and automated dispatch systems improve supply chain efficiency. The Indian government’s push for multi-modal logistics parks (MMLPs) is expected to enhance cement transportation efficiency.
Indrendra Singh Raghuwanshi, Sales Head – Cement Division, ATS Conveyors, says, “Ensuring that our systems handle diverse alternative fuels reliably is at the core of our engineering approach. Alternative fuels, such as biomass, MSW, RDF and industrial waste vary significantly in terms of composition, size, moisture content, and combustibility. All our systems are designed with flexibility and robustness to meet the unique challenges posed by these fuels while maintaining operational efficiency and safety. Also, before deployment to site, we conduct extensive testing for our equipment to ensure that they can reliably handle alternative fuels under a variety of conditions. This includes testing different fuel types, moisture levels, and feeding rates to identify any potential challenges. Our systems are then fine-tuned during the commissioning phase to ensure optimal performance in real-world conditions.”
The future is automation and digitalisation
The future of bulk material handling in the cement industry lies in automation, artificial intelligence (AI), and digital twin technologies. Leading cement manufacturers are investing in IoT-enabled bulk handling systems that provide real-time monitoring, predictive maintenance, and AI-based process optimisation.
1. Smart sensors and predictive maintenance
AI-powered sensors are now being integrated into conveyors and stackers to detect early signs of wear and tear, enabling proactive maintenance and reducing unplanned downtime.
Nishith Kundar, Co-Managing Partner, Cemtech Engineering Solutions, says, “One of our latest advancements is the introduction of drone inspection technology. Since silos are confined spaces, it is often difficult to assess their internal condition, particularly at the top. We have incorporated drone inspections for both pre-cleaning and post-cleaning assessments. Pre-cleaning drone inspections help us analyse the extent of material buildup, while post-cleaning inspections ensure that the silo has been thoroughly cleaned. This technology is also applicable to pre-heaters, allowing us to monitor internal conditions in confined spaces. By leveraging drone technology, we provide precise and efficient cleaning services, improving safety and operational efficiency.”
2. Digital twin technology
Digital twin models create a virtual replica of bulk handling systems, allowing operators to simulate various scenarios and optimise material flow before implementing changes in real time.
3. Automated Guided Vehicles (AGVs) and robotics
The adoption of AGVs and robotic material handling systems is gaining traction in cement plants for automated raw material transport, warehouse management, and truck loading/unloading.
Gaurav Gautam, Business Unit Head,
Beumer Group, says, “A major recent focus has been integrating digital monitoring tools into our equipment. These tools include condition monitoring sensors that track temperature variations, vibrations and operational anomalies in real-time. By capturing this data, plant operators can take proactive actions when conditions start deviating from normal parameters. This approach prevents sudden breakdowns and, in the long term, enhances the durability and reliability of the equipment.”
“Moving forward, digitalisation will play a key role in tackling wear and tear challenges. By increasing the number of data capture points and applying advanced analytics tools, we can gain deeper insights into equipment health and performance, ensuring a more efficient and predictive maintenance strategy,” he adds.
Conclusion
Efficient bulk material handling is the backbone of cement manufacturing, ensuring a seamless flow of raw materials and finished products while minimising environmental impact and operational costs. As India’s cement industry moves towards higher production capacities and stricter environmental norms, investing in advanced, automated and energy-efficient bulk handling solutions will be key to maintaining competitiveness.
By embracing smart technologies, automation and sustainable handling practices, cement manufacturers can enhance productivity, reduce material losses, and contribute to a greener and more efficient future for the industry.
Trending News
-
Concrete4 weeks ago
UltraTech Expands Cement Capacity in West Bengal
-
Uncategorized4 weeks ago
Baldota Group to Set Up Rs 540 Billion Steel Plant in Koppal
-
Economy & Market2 weeks ago
Jayesh Ranjan & Cement Expo Forum Leaders converge in Hyderabad
-
Concrete4 weeks ago
Decarbonisation is a focus for our R&D effort