Connect with us

Concrete

Refractories: Enabling Sustainability

Published

on

Shares

Refractories are the cornerstone of sustainability at a cement plant. It is important to understand their role in improving the cost efficiency of cement manufacturing and minimising its environmental impact. ICR looks into the changes in production and maintenance of refractories that have led to customised solutions, in the light of the use of alternative fuel and raw materials.

Cement manufacture is an example of human ingenuity and engineering prowess in the field of heavy industry. This essential building element, which is used everywhere nowadays, goes through a transformation process to become the finished product, and refractory is a crucial element that lies at the heart of this endeavour.
Cement plants are bustling ecosystems of industrial activity, where raw materials such as limestone, clay and shale are subjected to extreme temperatures, chemical reactions, and rigorous mechanical forces. To withstand the unforgiving environment inside cement kilns and related equipment, refractories emerge as the linchpin. These specialised materials are engineered to endure searing temperatures that could make even the hardiest of materials crumble. But refractories do more than just resist heat; they play a multifaceted role in safeguarding the integrity of the entire production process.
According to a report published in Times of India, May 2022, the Indian refractory market was sized at an estimated Rs 9,000 crore, closing in on Rs 10,000 crore in 2019. India’s steel capacity is targeted at 300 MT by 2030, as per India’s Steel Policy. Production is expected to grow to 230 MT by that time from 118 MT in FY 22. The cement industry is expected to grow by 12 per cent against a CAGR of 6 per cent historically. This means that an unprecedented need gap is waiting to be addressed by the refractory industry.
Government’s initiative of Atmanirbhar Bharat, and better understanding of the criticality of refractory to steel and cement making, has caused a change in the consumer industries’ mindset.
Companies around the world, who have built their supply chain around China, now want to de-risk China. There is now a higher demand for ‘Made in India’ products. This trend has significantly accelerated post Covid. As a result, most countries now actively seek alternative suppliers to reduce their heavy dependence on China for both raw material and finished goods.
This has created a significant opportunity for India to step in. The Indian refractory industry now must cater, not only to the increased internal demand, but also around the world.

ROLE OF AUTOMATION
Automation and technology are integral components in the effective utilisation of refractories within cement plants, especially in the context of cement manufacturing. These advanced tools play a multifaceted role in ensuring the optimal performance and longevity of refractory materials.
According to Tushar Khandhadia, General Manager – Production, Udaipur Cement Works Limited, “Technology and automation play a vital role in enhancing efficiency, accuracy, and safety in the use of refractories for cement kilns. AI and machine learning algorithms can analyse vast amounts of data to identify patterns and trends related to refractory behaviour and performance. This enables data-driven decision-making for optimising refractory selection, installation, and maintenance processes.”
One of the key functions of automation is temperature monitoring and control. Automation systems rely on advanced sensors and monitoring devices to continually measure and regulate the temperatures inside cement kilns and other high-temperature zones where refractories are employed. This precision control prevents refractory linings from experiencing overheating or cooling below the necessary levels, ultimately extending their lifespan and efficacy.
Rajesh Pathak, Managing Director, Schenck Process Solutions India, says, “Since our core value is to meet customer expectations, we meet and understand customer requirements and make alterations in the system for it to fit suitably in their process. There are two different types of MULTICOR® systems for Pyro; (a) For coal-Schenck offers combination of MULTICELL® (pre-feeder) + MULTICOR® K (Measuring Unit) and (b) For Raw Meal- Schenck offers combination of Dosing Valve (pre-feeder) + MULTICOR® S (Measuring Unit).”
Moreover, automation goes beyond mere temperature control. It incorporates predictive maintenance capabilities, coupling data analytics and predictive algorithms to foresee potential wear, damage, or deterioration in refractories. By identifying issues early on, cement plant operators can proactively schedule maintenance activities, minimising downtime and preventing production disruptions.
“By leveraging the power of automation and AI-driven analytics, the cement industry can reduce maintenance costs, enhance equipment reliability, and achieve higher energy efficiency, ultimately leading to improved productivity and profitability. We are also focusing on automation and technology up gradation to optimise the use of energy in cement plants. To achieve this, various steps have been taken towards energy conservation and technology absorption,” says Pankaj Kejriwal, Managing Director, Star Cement.
Furthermore, modern cement plants integrate remote monitoring and control systems. These centralised control rooms enable operators to oversee operations from a distance, facilitating rapid responses to issues that may affect refractory performance. This remote control aspect enhances both operational efficiency and safety.
Keyur Shah, Business Manager, SB Engineers, states, “Data from our systems gives better control to the plant and process monitoring. It allows for optimising processes. It helps with any adjustment of the fuel being pumped or to the burning zone, burner air, axil air or any other air, which is being provided to the burner. Available data also helps to make process improvements that helps optimise all critical processes at the cement plants.”
“A major challenge as of now for us occurs because the cement industry is undergoing transformation from technically automation run plants to data driven running plants. This transformation furthering the adaptability of these new changes by the plant operators or by the plant operations team is a major challenge,” he adds.

KILN ENVIRONMENT AND MAINTENANCE
Cement refractory kilns are unforgiving environments characterised by extreme conditions that can take a toll on the refractory materials used in these facilities. With temperatures exceeding 1400°C during clinker production, thermal stress and wear become significant concerns. Frequent exposure to such high temperatures necessitates regular maintenance to repair or replace damaged refractory linings, ensuring their integrity remains intact. Additionally, the chemically aggressive environment, with alkalis, sulphates and other compounds in the raw materials, can lead to erosion and corrosion. To combat this, inspections are vital to monitor conditions and the use of high-quality refractory materials resistant to chemical attack is essential.
“Our process is ISO certified. We are a premium refractory manufacturer, so we are very keen on choosing our raw material and we are doing a lot of testing of our finished goods before they are dispatched. So, you can say that there is rigorous testing of our raw material and finished goods as far as refractories are concerned,” says Mayank Kamdar, Marketing Director, Lilanand Magnesites.
Dust and particulate emissions in the cement manufacturing process can settle on refractory surfaces, potentially affecting their performance. Thus, frequent cleaning and dust removal are crucial to ensuring optimal refractory conditions and preventing blockages or reduced airflow. Thermal cycling, caused by heating and cooling cycles in the kilns, can result in thermal shock, leading to cracks and fractures in refractories. To mitigate these effects, the use of thermal cycling-resistant refractory materials and adherence to proper operating procedures are essential.
“We perform tests on refractories once in two or three years through reputed laboratories or testing agencies. However, regular inspections through shell temperature profile help us identify defects early, allowing for timely repairs or replacements to maintain the integrity and performance of the refractory lining in kilns. These intervals mentioned are indicative and may vary based on kiln operating conditions, refractory type, and specific industry guidelines,” says Khandhadia.
Abrasion is another challenge in cement kilns, caused by the constant movement of materials and interaction with gases and dust. This issue demands ongoing monitoring and maintenance, with quality refractories designed to withstand abrasion playing a pivotal role. Mechanical stress resulting from various factors, including thermal cycling and the weight of materials, poses another threat. Regular inspections and maintenance are essential to address such mechanical wear and maintain the structural integrity of refractory linings.
Lastly, the quality of refractory materials plays a pivotal role in their performance within cement kilns. Low-quality materials can lead to premature failure and increased maintenance costs. Therefore, it is imperative to use high-quality refractory materials specifically designed for cement kiln applications, and rigorous quality control in material selection and installation is necessary to maximise refractory lifespan and performance. In conclusion, maintaining refractory integrity in cement kilns involves addressing the demanding conditions they face through regular maintenance and the use of superior-quality refractory materials, ensuring the efficient and safe operation of these critical industrial facilities.
Refractories in industrial settings experience shutdowns primarily due to factors such as thermal stress, chemical attack, abrasion, mechanical impact, dust accumulation, thermal cycling, insufficient maintenance, subpar quality of refractory materials, improper installation and overheating. These shutdowns can disrupt industrial processes, leading to downtime and increased operational costs. To mitigate such issues, industries focus on regular maintenance, inspections, and repairs, employ high-quality refractory materials suited to the specific conditions, ensure proper installation techniques, and adhere to operational limits and safety protocols. These proactive measures aim to extend the lifespan of refractories,
minimise unplanned shutdowns, and maintain the reliable and efficient functioning of industrial equipment.
“Production efficiency comes from low shutdowns. If the cement plants must take a shutdown for 15-20 days every 2 to 3 months versus taking only one shutdown, the number of days of operations increases by 20 to 30 days. This means they gain one month of additional production and this is how our refractories help them achieve higher production, higher profits and achieve efficient outputs,” elaborates Vivek Singh, Sales Director – Thermal & Exports, South West Asia, Calderys Refractories India.
“Our focus is to help cement plants increase their outputs with the available infrastructure by reducing the need for shutdowns and possibilities of stopping production,” he adds.

REFRACTORIES FOR CEMENT PLANTS
In cement plants, various types of refractories are strategically employed to cater to the
distinct demands of different stages in the cement manufacturing process.
Alumina-based refractories, resistant to moderate temperatures and abrasion, are used in preheater and cyclone stages. Basic refractories, primarily magnesia-based, excel in the burning zone of rotary kilns due to their ability to withstand high temperatures and resist chemical attacks from alkalis.
Silica-based refractories find their place in cooler areas, offering good abrasion resistance and thermal insulation.
Chrome-based refractories, renowned for their resistance to extreme heat and chemical attack, are crucial in the kiln’s burning zone.
Zirconia-based refractories shine where thermal shock is a concern, such as the cooler and transition zones.
Finally, lightweight insulating refractories are deployed to reduce heat loss and improve energy efficiency, often found in areas requiring thermal insulation.
The choice of refractory type is tailored to the specific conditions of each process stage, ensuring efficiency, longevity and optimal performance in cement plants.
According to a report titled Refractories Selection for Cement Industry, August 2020 published by IN Chakraborty, Ace Calderys Limited, Nagpur, refractory selection is the most important step for the maximisation of its performance. The major deciding factors for refractory selection are the working environment where the refractory would be used. The working environment, in general, is defined by the following parameters:
• Operating temperature
• Chemical condition
• Chemical nature of solid or liquid, i.e., acidic, or basic, in contact with the refractory
• Characteristic of the gaseous environment
• Thermal shock
• Mechanical stress
• Abrasion
Refractory selection is the most important step for the maximisation of its performance. The major deciding factor for refractory selection is the working or operating environment where the refractory would be used.
Identification of critical parameters for a given working environment is vital for refractory life maximisation at optimal cost. Once the critical operating parameters are identified, the refractory should be so selected that it can withstand the operating condition for the stipulated lifespan. In the context of the refractory life in the cement rotary kiln, the lining design as well as the quality of refractory installation play a very critical role.
As a function of the cement manufacturing process, a raw meal i.e., a mix of limestone, quartz, clay and some lateritic material is fed in the kiln. This operating condition in this kiln is not severe except for in the burning zone where temperature can go up to 1450oC and the liquid content of the feed material falls in the range of 25 per cent to 27 per cent.

CONCLUSION
In the complex and high-temperature world of cement production, refractories stand as the unsung heroes, meticulously selected, and tailored to withstand the unique challenges of each stage in the manufacturing process. The choice of refractory type is a testament to the careful consideration of the specific conditions and requirements at every stage, ensuring the reliable and efficient production of this vital building material. Cement plants may be a symbol of industry, but behind the scenes, it is the adaptability and resilience of refractories that keep the fires burning and the cement flowing.

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares



Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Concrete

Industry Bodies Call for Wider Use of Cement Co-Processing

Joint statement seeks policy support for sustainable waste management

Published

on

By

Shares



Leading industry organisations have called for stronger policy support to accelerate the adoption of cement industry co-processing as a sustainable solution for managing non-recyclable and non-reusable waste. In a joint statement, bodies including the Global Cement and Concrete Association, European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council highlighted the role co-processing can play in addressing the growing global waste challenge.
Co-processing enables the use of waste as an alternative to fossil fuels in cement kilns, while residual ash is incorporated into cementitious materials, resulting in a zero-waste process. The approach supports both energy recovery and material recycling, complements conventional recycling systems and reduces reliance on landfill infrastructure. It is primarily applied to waste streams that are contaminated or unsuitable for recycling.
The organisations noted that co-processing is already recognised in regions such as Europe, India, Latin America and North America, operating under regulated frameworks to ensure safety, emissions control and transparency. However, adoption remains uneven globally, with some plants achieving over 90 per cent fuel substitution while others lack enabling policies.
The statement urged governments and institutions to formally recognise co-processing in waste management frameworks, streamline environmental permitting, incentivise waste collection and pre-treatment, account for recycled material content in national targets, and support public-private partnerships. The call comes amid rising global waste volumes, which are estimated at over 11 billion tonnes annually, with unmanaged waste contributing to greenhouse gas emissions, pollution and health risks.

Continue Reading

Concrete

Why Cement Needs CCUS

Published

on

By

Shares



Cement’s deep decarbonisation cannot be achieved through efficiency and fuel switching alone, making CCUS essential to address unavoidable process emissions from calcination. ICR explores if with the right mix of policy support, shared infrastructure, and phased scale-up from pilots to clusters, CCUS can enable India’s cement industry to align growth with its net-zero ambitions.

Cement underpins modern development—from housing and transport to renewable energy infrastructure—but it is also one of the world’s most carbon-intensive materials, with global production of around 4 billion tonnes per year accounting for 7 to 8 per cent of global CO2 emissions, according to the GCCA. What makes cement uniquely hard to abate is that 60 to 65 per cent of its emissions arise from limestone calcination, a chemical process that releases CO2 irrespective of the energy source used; the IPCC Sixth Assessment Report (AR6) therefore classifies cement as a hard-to-abate sector, noting that even fully renewable-powered kilns would continue to emit significant process emissions. While the industry has achieved substantial reductions over the past two decades through energy efficiency, alternative fuels and clinker substitution using fly ash, slag, and calcined clays, studies including the IEA Net Zero Roadmap and GCCA decarbonisation pathways show these levers can deliver only 50 to 60 per cent emissions reduction before reaching technical and material limits, leaving Carbon Capture, Utilisation and Storage (CCUS) as the only scalable and durable option to address remaining calcination emissions—an intervention the IPCC estimates will deliver nearly two-thirds of cumulative cement-sector emission reductions globally by mid-century, making CCUS a central pillar of any credible net-zero cement pathway.

Process emissions vs energy emissions
Cement’s carbon footprint is distinct from many other industries because it stems from two sources: energy emissions and process emissions. Energy emissions arise from burning fuels to heat kilns to around 1,450°C and account for roughly 35 to 40 per cent of total cement CO2 emissions, according to the International Energy Agency (IEA). These can be progressively reduced through efficiency improvements, alternative fuels such as biomass and RDF, and electrification supported by renewable power. Over the past two decades, such measures have delivered measurable gains, with global average thermal energy intensity in cement production falling by nearly 20 per cent since 2000, as reported by the IEA and GCCA.
The larger and more intractable challenge lies in process emissions, which make up approximately 60 per cent to 65 per cent of cement’s total CO2 output. These emissions are released during calcination, when limestone (CaCO3) is converted into lime (CaO), inherently emitting CO2 regardless of fuel choice or energy efficiency—a reality underscored by the IPCC Sixth Assessment Report (AR6). Even aggressive clinker substitution using fly ash, slag, or calcined clays is constrained by material availability and performance requirements, typically delivering 20 to 40 per cent emissions reduction at best, as outlined in the GCCA–TERI India Cement Roadmap and IEA Net Zero Scenario. This structural split explains why cement is classified as a hard-to-abate sector and why incremental improvements alone are insufficient; as energy emissions decline, process emissions will dominate, making Carbon Capture, Utilisation and Storage (CCUS) a critical intervention to intercept residual CO2 and keep the sector’s net-zero ambitions within reach.

Where CCUS stands today
Globally, CCUS in cement is moving from concept to early industrial reality, led by Europe and North America, with the IEA noting that cement accounts for nearly 40 per cent of planned CCUS projects in heavy industry, reflecting limited alternatives for deep decarbonisation; a flagship example is Heidelberg Materials’ Brevik CCS project in Norway, commissioned in 2025, designed to capture about 400,000 tonnes of CO2 annually—nearly half the plant’s emissions—with permanent offshore storage via the Northern Lights infrastructure (Reuters, Heidelberg Materials), alongside progress at projects in the UK, Belgium, and the US such as Padeswood, Lixhe (LEILAC), and Ste. Genevieve, all enabled by strong policy support, public funding, and shared transport-and-storage infrastructure.
These experiences show that CCUS scales fastest when policy support, infrastructure availability, and risk-sharing mechanisms align, with Europe bridging the viability gap through EU ETS allowances, Innovation Fund grants, and CO2 hubs despite capture costs remaining high at US$ 80-150 per tonne of CO2 (IEA, GCCA); India, by contrast, is at an early readiness stage but gaining momentum through five cement-sector CCU testbeds launched by the Department of Science and Technology (DST) under academia–industry public–private partnerships involving IITs and producers such as JSW Cement, Dalmia Cement, and JK Cement, targeting 1-2 tonnes of CO2 per day to validate performance under Indian conditions (ETInfra, DST), with the GCCA–TERI India Roadmap identifying the current phase as a foundation-building decade essential for achieving net-zero by 2070.
Amit Banka, Founder and CEO, WeNaturalists, says “Carbon literacy means more than understanding that CO2 harms the climate. It means cement professionals grasping why their specific plant’s emissions profile matters, how different CCUS technologies trade off between energy consumption and capture rates, where utilisation opportunities align with their operational reality, and what governance frameworks ensure verified, permanent carbon sequestration. Cement manufacturing contributes approximately 8 per cent of global carbon emissions. Addressing this requires professionals who understand CCUS deeply enough to make capital decisions, troubleshoot implementation challenges, and convince boards to invest substantial capital.”

Technology pathways for cement
Cement CCUS encompasses a range of technologies, from conventional post-combustion solvent-based systems to process-integrated solutions that directly target calcination, each with different energy requirements, retrofit complexity, and cost profiles. The most mature option remains amine-based post-combustion capture, already deployed at industrial scale and favoured for early cement projects because it can be retrofitted to existing flue-gas streams; however, capture costs typically range from US$ 60-120 per tonne of CO2, depending on CO2 concentration, plant layout, and energy integration.
Lovish Ahuja, Chief Sustainability Officer, Dalmia Cement (Bharat), says, “CCUS in Indian cement can be viewed through two complementary lenses. If technological innovation, enabling policies, and societal acceptance fail to translate ambition into action, CCUS risks becoming a significant and unavoidable compliance cost for hard-to-abate sectors such as cement, steel, and aluminium. However, if global commitments under the Paris Agreement and national targets—most notably India’s Net Zero 2070 pledge—are implemented at scale through sustained policy and industry action, CCUS shifts from a future liability to a strategic opportunity. In that scenario, it becomes a platform for technological leadership, long-term competitiveness, and systemic decarbonisation rather than merely a regulatory burden.”
“Accelerating CCUS adoption cannot hinge on a single policy lever; it demands a coordinated ecosystem approach. This includes mission-mode governance, alignment across ministries, and a mix of enabling instruments such as viability gap funding, concessional and ESG-linked finance, tax incentives, and support for R&D, infrastructure, and access to geological storage. Importantly, while cement is largely a regional commodity with limited exportability due to its low value-to-weight ratio, CCUS innovation itself can become a globally competitive export. By developing, piloting, and scaling cost-effective CCUS solutions domestically, India can not only decarbonise its own cement industry but also position itself as a supplier of affordable CCUS technologies and services to cement markets worldwide,” he adds.
Process-centric approaches seek to reduce the energy penalty associated with solvent regeneration by altering where and how CO2 is separated. Technologies such as LEILAC/Calix, which uses indirect calcination to produce a high-purity CO2 stream, are scaling toward a ~100,000 tCO2 per year demonstrator (LEILAC-2) following successful pilots, while calcium looping leverages limestone chemistry to achieve theoretical capture efficiencies above 90 per cent, albeit still at pilot and demonstration stages requiring careful integration. Other emerging routes—including oxy-fuel combustion, membrane separation, solid sorbents, and cryogenic or hybrid systems—offer varying trade-offs between purity, energy use, and retrofit complexity; taken together, recent studies suggest that no single technology fits all plants, making a multi-technology, site-specific approach the most realistic pathway for scaling CCUS across the cement sector.
Yash Agarwal, Co-Founder, Carbonetics Carbon Capture, says, “We are fully focused on CCUS, and for us, a running plant is a profitable plant. What we have done is created digital twins that allow operators to simulate and resolve specific problems in record time. In a conventional setup, when an issue arises, plants often have to shut down operations and bring in expert consultants. What we offer instead is on-the-fly consulting. As soon as a problem is detected, the system automatically provides a set of potential solutions that can be tested on a running plant. This approach ensures that plant shutdowns are avoided and production is not impacted.”

The economics of CCUS
Carbon Capture, Utilisation and Storage (CCUS) remains one of the toughest economic hurdles in cement decarbonisation, with the IEA estimating capture costs of US$ 80-150 per tonne of CO2, and full-system costs raising cement production by US$ 30-60 per tonne, potentially increasing prices by 20 to 40 per cent without policy support—an untenable burden for a low-margin, price-sensitive industry like India’s.
Global experience shows CCUS advances beyond pilots only when the viability gap is bridged through strong policy mechanisms such as EU ETS allowances, Innovation Fund grants, and carbon Contracts for Difference (CfDs), yet even in Europe few projects have reached final investment decision (GCCA); India’s lack of a dedicated CCUS financing framework leaves projects reliant on R&D grants and balance sheets, reinforcing the IEA Net Zero Roadmap conclusion that carbon markets, green public procurement, and viability gap funding are essential to spread costs across producers, policymakers, and end users and prevent CCUS from remaining confined to demonstrations well into the 2030s.

Utilisation or storage
Carbon utilisation pathways are often the first entry point for CCUS in cement because they offer near-term revenue potential and lower infrastructure complexity. The International Energy Agency (IEA) estimates that current utilisation routes—such as concrete curing, mineralisation into aggregates, precipitated calcium carbonate (PCC), and limited chemical conversion—can realistically absorb only 5 per cent to 10 per cent of captured CO2 at a typical cement plant. In India, utilisation is particularly attractive for early pilots as it avoids the immediate need for pipelines, injection wells, and long-term liability frameworks. Accordingly, Department of Science and Technology (DST)–supported cement CCU testbeds are already demonstrating mineralisation and CO2-cured concrete applications at 1–2 tonnes of CO2 per day, validating performance, durability, and operability under Indian conditions.
However, utilisation faces hard limits of scale and permanence. India’s cement sector emits over 200 million tonnes of CO2 annually (GCCA), far exceeding the absorptive capacity of domestic utilisation markets, while many pathways—especially fuels and chemicals—are energy-intensive and dependent on costly renewable power and green hydrogen. The IPCC Sixth Assessment Report (AR6) cautions that most CCU routes do not guarantee permanent storage unless CO2 is mineralised or locked into long-lived materials, making geological storage indispensable for deep decarbonisation. India has credible storage potential in deep saline aquifers, depleted oil and gas fields, and basalt formations such as the Deccan Traps (NITI Aayog, IEA), and hub-based models—where multiple plants share transport and storage infrastructure—can reduce costs and improve bankability, as seen in Norway’s Northern Lights project. The pragmatic pathway for India is therefore a dual-track approach: utilise CO2 where it is economical and store it where permanence and scale are unavoidable, enabling early learning while building the backbone for net-zero cement.

Policy, infrastructure and clusters
Scaling CCUS in the cement sector hinges on policy certainty, shared infrastructure, and coordinated cluster development, rather than isolated plant-level action. The IEA notes that over 70 per cent of advanced industrial CCUS projects globally rely on strong government intervention—through carbon pricing, capital grants, tax credits, and long-term offtake guarantees—with Europe’s EU ETS, Innovation Fund, and carbon Contracts for Difference (CfDs) proving decisive in advancing projects like Brevik CCS. In contrast, India lacks a dedicated CCUS policy framework, rendering capture costs of USD 80–150 per tonne of CO2 economically prohibitive without state support (IEA, GCCA), a gap the GCCA–TERI India Cement Roadmap highlights can be bridged through carbon markets, viability gap funding, and green public procurement.
Milan R Trivedi, Vice President, Shree Digvijay Cement, says, “CCUS represents both an unavoidable near-term compliance cost and a long-term strategic opportunity for Indian cement producers. While current capture costs of US$ 100-150 per tonne of CO2 strain margins and necessitate upfront retrofit investments driven by emerging mandates and NDCs, effective policy support—particularly a robust, long-term carbon pricing mechanism with tradable credits under frameworks like India’s Carbon Credit Trading Scheme (CCTS)—can de-risk capital deployment and convert CCUS into a competitive advantage. With such enablers in place, CCUS can unlock 10 per cent to 20 per cent green price premiums, strengthen ESG positioning, and allow Indian cement to compete in global low-carbon markets under regimes such as the EU CBAM, North America’s buy-clean policies, and Middle Eastern green procurement, transforming compliance into export-led leadership.”
Equally critical is cluster-based CO2 transport and storage infrastructure, which can reduce unit costs by 30 to 50 per cent compared to standalone projects (IEA, Clean Energy Ministerial); recognising this, the DST has launched five CCU testbeds under academia–industry public–private partnerships, while NITI Aayog works toward a national CCUS mission focused on hubs and regional planning. Global precedents—from Norway’s Northern Lights to the UK’s HyNet and East Coast clusters—demonstrate that CCUS scales fastest when governments plan infrastructure at a regional level, making cluster-led development, backed by early public investment, the decisive enabler for India to move CCUS from isolated pilots to a scalable industrial solution.
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, says, “Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that in the absence of a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.”

From pilots to practice
Moving CCUS in cement from pilots to practice requires a sequenced roadmap aligning technology maturity, infrastructure development, and policy support: the IEA estimates that achieving net zero will require CCUS to scale from less than 1 Mt of CO2 captured today to over 1.2 Gt annually by 2050, while the GCCA Net Zero Roadmap projects CCUS contributing 30 per cent to 40 per cent of total cement-sector emissions reductions by mid-century, alongside efficiency, alternative fuels, and clinker substitution.
MM Rathi, Joint President – Power Plants, Shree Cement, says, “The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80-150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives. While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.”
Early pilots—such as India’s DST-backed CCU testbeds and Europe’s first commercial-scale plants—serve as learning platforms to validate integration, costs, and operational reliability, but large-scale deployment will depend on cluster-based scale-up, as emphasised by the IPCC AR6, which highlights the need for early CO2 transport and storage planning to avoid long-term emissions lock-in. For India, the GCCA–TERI India Roadmap identifies CCUS as indispensable for achieving net-zero by 2070, following a pragmatic pathway: pilot today to build confidence, cluster in the 2030s to reduce costs, and institutionalise CCUS by mid-century so that low-carbon cement becomes the default, not a niche, in the country’s infrastructure growth.

Conclusion
Cement will remain indispensable to India’s development, but its long-term viability hinges on addressing its hardest emissions challenge—process CO2 from calcination—which efficiency gains, alternative fuels, and clinker substitution alone cannot eliminate; global evidence from the IPCC, IEA, and GCCA confirms that Carbon Capture, Utilisation and Storage (CCUS) is the only scalable pathway capable of delivering the depth of reduction required for net zero. With early commercial projects emerging in Europe and structured pilots underway in India, CCUS has moved beyond theory into a decisive decade where learning, localisation, and integration will shape outcomes; however, success will depend less on technology availability and more on collective execution, including coordinated policy frameworks, shared transport and storage infrastructure, robust carbon markets, and carbon-literate capabilities.
For India, a deliberate transition from pilots to practice—anchored in cluster-based deployment, supported by public–private partnerships, and aligned with national development and climate goals—can transform CCUS from a high-cost intervention into a mainstream industrial solution, enabling the cement sector to keep building the nation while sharply reducing its climate footprint.

– Kanika Mathur

Continue Reading

Trending News