Connect with us

Concrete

Ignore at Your Own Peril

Published

on

Shares

ICR looks at the impact of various methods such as use of alternative fuel and raw materials, tackling the emissions issue and encouraging carbon capture in a bid to make green cement and progress towards Net Zero goals.

The analytical journey is long past its prime when it comes to diagnosing the emission problem pertaining to cement and concrete. There is no denying the fact that the problem is too big.
If concrete was a country, it would be the biggest production centre as all other commodities put together will not even come close to the 30 billion tonnes of concrete that the world produces every year. If cement was a country, it would be the third highest emitter of CO2 in the world. But the efforts have been to find an approach that would force corporations to either limit and progressively reduce over time the impact on the environment through a slew of measures directed at reducing the carbon footprint of cement.
The chart attached shows the distribution of the CO2 emission based on the processing steps for making cement from limestone.

United efforts
The last five years has seen acceleration in the efforts towards finding significant pathways for reducing carbon footprint in cement production around the world. The progress on substantial reduction has been positive with concentration in the following areas:

  • Focus on Calcination Emission: Reducing clinkering by adding alternative materials that can replace clinker
  • Focus on Fossil Fuel Emission: Efficiency improvement in a number of areas that reduce the use of fossil fuels per unit of cement output, together with the use of alternative fuel.
    Under the first category, we see a rise in the use of fly ash from the coal-based power plants that replace clinker during grinding and the percentage increase in the last five years on this count would be around 2 per cent (31 per cent moving to 33 per cent with the balance being clinker). Alternatively, the use of blast furnace slag has seen a rise of 5 per cent (50 per cent moving to 55 per cent with the balance being clinker). Both of these actions have taken the total CO2 emission to 860 kg per tonne for some of the best operating plants of the world.
    The challenges for the future in this regard is that fly ash will remain a constantly depleting resource as all fresh investments into coal fired power plants are scrutinised and it is most likely that the current generation of fly ash will not move up in the coming years. This poses some challenges for the future as the emission pathways that consider use of fly ash as a potential lever for replacing clinker would have to find new pathways as a countermeasure. The use of blast furnace slag also has the same problem brewing at large as steel production is slated for overall sustainability improvement measures, which ordains reduced output of blast furnace slag as a definitive measure.

Tackling the emissions issue
This leaves the focus on alternative use of other non-fossil fuels for producing cement, where the actual progress is almost entirely hinged on renewable sources producing electricity that would be used for clinkerisation as well as for grinding. While the latter has progressed well, the former is still at a stage where a handful of cement units have signed up for the alternative technology in kilns.
Most of the technologies so far have progressed little towards solving the real issue of emission stemming from the clinkerisation process itself, as the molecular structure change from limestone to clinker involves generation of CO2 quite inevitably. The solutions therefore looked at ways of capturing carbon from the emission process, somewhat similar to the photo-synthesis process in plants as Professor Dr Aldo Seinfeld from ETH Zürich has shown. However, the progress is still at a laboratory scale and to find an economic solution will still take some time. For example, most cement kilns today produce close to 2.5 million tonnes of clinker and the sizing is only moving up, which means the amount of CO2 generation from these kilns per year would be close to 2 million tonnes. To get CO2 capturing systems to scale up to these levels would need many years.

Putting carbon to good use
The question is how can we help to scale up the capacity to sequester and store carbon from the emissions from cement kilns? The problem needs to be approached scientifically to make the process economical, which is where the current focus is. But more than the laboratories where this progress is well grounded, we need the cement corporations to set aside funds for investments that need to be made for all future kilns that have the provisions for carbon capture.
The next question is to look at how the stored carbon can be put to use in production of concrete? This requires more than the usual scientific research, as the supply chain of concrete making must factor in ways and means of finding pathways for using stored carbon in the concrete making. The Economist reports that companies like CarbonCure, a Canadian firm, are doing this. They have fitted equipment, which injects CO2 into ready-mixed concrete to more than 400 plants around the world. Its system has been used to construct buildings that include a new campus in Arlington, Virginia, for Amazon, an online retailer (and also a shareholder in CarbonCure), and an assembly plant for electric vehicles, for General Motors in Spring Hill, Tennessee.

Piloting new technologies
One of the other areas of focus has been to find an alternative route to clinkerisation that is based on electricity.
Calix, based in Sydney, Australia, is working on an electrically powered system, which heats the limestone indirectly, from the outside of the kiln rather than the inside. That enables pure CO2 to be captured without having to clean up combustion gases from fuel burnt inside the kiln—so, if the electricity itself came from green sources, the resulting cement would be completely green.
A pilot plant using this technology has run successfully as part of a European Union research project on a site in Belgium operated by Heidelberg Cement, a German firm that is one of the world’s biggest cement-makers. A larger demonstration plant is due to open in 2023, in Hanover, to help scale up the technology.
Almost all of this would need sacrifice from many stakeholders, as the cost of making cement and concrete will rise as investments have to be made in new technology. Bill Gates’ book, ‘How to Avoid a Climate Disaster,’ projected an increase of the cement making cost from the current $125 per tonne to a range of $219 to $300 if the CO2 emissions have to be taken care of for achieving Net Zero. However, the price of cement is already much above $125 per tonne even without factoring any of the carbon capture and sequestration measures, so the real rise could be much more.
A community of stakeholders, starting with the corporation making cement, the community near the cement kilns, the customers, the suppliers and the government, all have a role to play to find a solution how this increase in costs would have to be borne and distributed. Carbon taxes have always been the time-tested path to decarbonisation. Stringent use of taxes as a potent tool has seen better progress, especially in Europe, where some serious progress has happened. Recycling of cement from the demolition waste is one great example.
The best example of coordination and collaboration is captured in the initiatives of the world’s largest kiln near Wuhan, where one would witness how the city municipality came forward to proactively recycle the entire city municipal waste into the kiln of the cement unit situated on the Yangtze river. The waste is transported by barges and through a pipeline taken directly into the cement kiln. Such collaboration could replace the hard stand of putting penalties, which after all could be regressive at times.

-Procyon Mukherjee

Concrete

Construction Costs Rise 11% in 2024, Driven by Labour Expenses

Cement Prices Decline 15%, But Labour Costs Surge by 25%

Published

on

By

Shares



The cost of construction in India increased by 11% over the past year, primarily driven by a 25% rise in labour expenses, according to Colliers India. While prices of key materials like cement dropped by 15% and steel saw a marginal 1% decrease, the surge in labour costs stretched construction budgets across sectors.

“Labour, which constitutes over a quarter of construction costs, has seen significant inflation due to the demand for skilled workers and associated training and compliance costs,” said Badal Yagnik, CEO of Colliers India.

The residential segment experienced the sharpest cost escalation due to a growing focus on quality construction and demand for gated communities. Meanwhile, commercial and industrial real estate remained resilient, with 37 million square feet of office space and 22 million square feet of warehousing space completed in the first nine months of 2024.

“Despite rising costs, investments in automation and training are helping developers address manpower challenges and streamline project timelines,” said Vimal Nadar, senior director at Colliers India.

With labour costs continuing to influence overall construction expenses, developers are exploring strategies to optimize operations and mitigate rising costs.

Continue Reading

Concrete

Swiss Steel to Cut 800 Jobs

Job cuts due to weak demand

Published

on

By

Shares



Swiss Steel has announced plans to cut 800 jobs as part of a restructuring effort, triggered by weak demand in the global steel market. The company, a major player in the European steel industry, cited an ongoing slowdown in demand as the primary reason behind the workforce reduction. These job cuts are expected to impact various departments across its operations, including production and administrative functions.

The steel industry has been facing significant challenges due to reduced demand from key sectors such as construction and automotive manufacturing. Additionally, the broader economic slowdown in Europe, coupled with rising energy costs, has further strained the profitability of steel producers like Swiss Steel. In response to these conditions, the company has decided to streamline its operations to ensure long-term sustainability.

Swiss Steel’s decision to cut jobs is part of a broader trend in the steel industry, where companies are adjusting to volatile market conditions. The move is aimed at reducing operational costs and improving efficiency, but it highlights the continuing pressures faced by the manufacturing sector amid uncertain global economic conditions.

The layoffs are expected to occur across Swiss Steel’s production facilities and corporate offices, as the company focuses on consolidating its workforce. Despite these cuts, Swiss Steel plans to continue its efforts to innovate and adapt to market demands, with an emphasis on high-value, specialty steel products.

Continue Reading

Concrete

UltraTech Cement to raise Rs 3,000 crore via NCDs to boost financial flexibility

UltraTech reported a 36% year-on-year (YoY) decline in net profit, dropping to Rs 825 crore

Published

on

By

Shares



UltraTech Cement, the Aditya Birla Group’s flagship company, has announced plans to raise up to Rs 3,000 crore through the private placement of non-convertible debentures (NCDs) in one or more tranches. The move aims to strengthen the company’s financial position amid increasing competition in the cement sector.

UltraTech’s finance committee has approved the issuance of rupee-denominated, unsecured, redeemable, and listed NCDs. The company has experienced strong stock performance, with its share price rising 22% over the past year, boosting its market capitalization to approximately Rs 3.1 lakh crore.

For Q2 FY2025, UltraTech reported a 36% year-on-year (YoY) decline in net profit, dropping to Rs 825 crore, below analyst expectations. Revenue for the quarter also fell 2% YoY to Rs 15,635 crore, and EBITDA margins contracted by 300 basis points. Despite this, the company saw a 3% increase in domestic sales volume, supported by lower energy costs.

In a strategic move, UltraTech invested Rs 3,954 crore for a 32.7% equity stake in India Cements, further solidifying its position in South India. UltraTech holds an 11% market share in the region, while competitor Adani holds 6%. UltraTech also secured $500 million through a sustainability-linked loan, underscoring its focus on sustainable growth driven by infrastructure and housing demand.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds