Connect with us

Concrete

Green Cements and Potential Challenges

Published

on

Shares

Dr SB Hegde, Professor, Jain University, Karnataka State, India, and Visiting Professor, Pennsylvania State University, USA, discusses the varieties of eco-friendly cements and their key components while evaluating the difficulties in manufacturing them.

Today, cement is the commodity item that is used most widely, and each person uses about half a tonne of cement annually.
Cement, however, has a significant negative impact on the environment despite the important role it plays in society. Currently, the production of cement consumes 3 per cent of the energy used worldwide and contributes to 4.5 per cent of greenhouse gas emissions (GHGs) and as the demand for cement rises, so does its impact on climate change.
For the world to achieve its goal of keeping global warming to 1.5°C in order to avoid the worst effects of climate change, it is imperative to find ways to reduce emissions from the cement sector, but this industry has proven to be obstinately challenging to decarbonise. Today, a crucial chemical process known as calcination is responsible for between fifty percent and two thirds of all emissions from cement manufacturing. Escaping these emissions is challenging.
In order to bring the cement industry to comply with the Paris Climate Agreement, annual emissions must decrease by at least 16 per cent by 2030. This implies that efforts along the entire value chain, from demand management to increasing process efficiency to utilising cutting-edge technologies and solutions in the manufacture of cement and concrete, will be crucial. However, directly addressing the process emissions will have the biggest impact.

It is anticipated that using CCUS technology to decarbonise the cement industry will increase costs by more than $100 per tonne of cement

Types of Main Green or Low Carbon Cements
Green cement is a product that is friendly to the environment and reduces the carbon footprint of cement production. A variety of green cement types have been created after numerous attempts to produce green cements.
The majority of these are based on technological developments, such as new cement formulations, geopolymers, carbon-negative cements, and new concrete products. These include energy-efficient, low carbon production techniques. Additionally, the production of green cement reduces the consumption of cement, and its primary raw materials include fly ash and blast furnace slag, industrial waste.
Examples of green cement include Ekkomaxx cement, magnesium oxychloride cement, geopolymer cement, ferrocrete, calcium sulfoaluminate cement and sequestrated carbon cement. While some of these products have been commercialised and used in numerous projects, some of these cements have not yet been widely used in construction projects despite having significant potential.

Ekkomaxx Cement
It is a kind of green cement made by the American company Ceratech, and it contains 5 per cent liquid renewable additives and 95 per cent fly ash. This cement, made by Ceratech Company, has almost no carbon footprint based on standards like the International Code Council and United States Green Building Council.
Along with a 95 per cent reduction in the use of virgin materials, the process of making cement also requires 50 per cent less water.
High early strength, resilience, crack resistance, low chloride permeability, resistance to sulphate attack, durability and corrosion resistance that is more than three times that of conventional cement, and greater resistance to freezing and thawing than that of standard cement are the main characteristics of Ekkomax cement.

Ferrocrete Cement
By combining silica and iron, which are leftover byproducts from the steel and glass industries, ferrocrete cement is created. This material mixture is then CO2-cured, potentially resulting in the creation of carbon-negative material. Ferrocrete was created by researchers at the Pennsylvania State University, USA.

Sequestrated Carbon Cement
The Calera Corp. cement in California produced cement from seawater or brine mixed with CO2 that may be used as a Portland cement substitute. In this cement production process, CO2 rich gases are filtered through seawater.
In order to create cement that can be used in place of Portland cement, the Calera Corp. cement plant in California mixed brine or seawater with CO2. Seawater is used to filter CO2 rich gases used in the cement manufacturing process.

Cement Produced with Superheated Steam
The process of superheated steam can be used to change the cement particles in order to make them more reactive. In this process, the emitted CO2 can be captured after it has been separated.

Magnesium oxychloride Cement (MOC)
Magnesium oxide (MgO) powder and a concentrated solution of magnesium chloride are the two main components of magnesium oxychloride cement (MOC), environmentally friendly and carbon-neutral cement (MgC12). These are byproducts of the mining of magnesium.
The MOC has great compressive strength and sets quickly and MgO absorbs CO2 from the atmosphere, but water can reduce its strength considerably. However, this weakness of MOC can be tackled to certain extent by introducing 15 per cent of fly ash and the same amount of silica fume.
These additives fill the pore structure in MOC, which makes the concrete denser. Consequently, both strength and durability of concrete is improved considerably. Furthermore, it is required to add phosphoric acid and soluble phosphates to improve the resistance of this type of green cement against warm water.
This cement causes steel to corrode – it cannot be used to build reinforced concrete structures unless this issue is resolved.

Geopolymer Cement
Alkali-activated cement, also known as geopolymer, is made from aluminosilicates rather than the more environmentally hazardous calcium oxide.
The aluminosilicates are made from by-products of industry, such as fly ash. The performance and price of the geopolymer cement are comparable to those of regular Portland cement, and it emits 95 per cent less CO2 overall.

Potential Challenges
Technology for carbon capture, utilisation, and storage (CCUS) offers one potential answer to these challenging process emissions. In CCUS, CO2 is extracted from cement manufacturing facilities’ exhaust gases and either used as a raw material for the production of valuable chemicals and fuels or stored deep underground in geological formations. Up to 90 per cent of all emissions from cement manufacturing could be eliminated by CCUS. However, there are a number of significant obstacles to overcome before the technology can be scaled up to meet sector demands. The challenges are as follows:

Clinkerisation is the most carbon intensive process in cement making and manufacturers are targeting this process mainly for carbon reduction.

A. CO2 Content
Compared to other industrial processes targeted by CCUS, cement production emits flue gas with a CO2 concentration of less than 20 per cent. Because of this, CO2 capture from cement plants is expensive. The efficiency and economics of the capture process could be improved with the use of creative kiln designs that separate exhaust gases, but doing so would require significant investment and plant redesign.

B. Geographic Limitations
Plants must be located close to an appropriate geological formation for carbon storage, which is neither common nor evenly distributed throughout the world. The cost of storing and transporting the captured CO2 in conjunction with a low-value product like cement poses a significant obstacle to the widespread use of this technology.

C. Capital Expenditure
The deployment of CCUS technology at scale is still a long way off and remains an expensive option. Although it is possible to capture cement plant emissions for about $100 per tonne of CO2, the costs are still higher than for other hard-to-abate industries like steel and fertiliser production.

D. Influence the Customers
It is anticipated that using CCUS technology to decarbonise the cement industry will increase costs by more than $100 per tonne of cement. This entails increasing the cost of cement from its current average of about $ 80-90 120 per tonne by a factor of two and consequently raising the cost of concrete by a factor of about 30 per cent. In a market where prices are so sensitive, this is a significant barrier.
Although CCUS technology is well-positioned to contribute to the decarbonisation of the cement industry, these difficulties make it unlikely that it will solve all problems and difficulties.

Low-Carbon or Green Cement – The Real Solution
Low-carbon cement can reduce process emissions by 10 to 100 per cent when compared to conventional ordinary Portland cement (OPC), which emits 0.6 tonnes of CO2 equivalent per tonne of cement and contains more than 90 per cent clinker. The most energy- and carbon-intensive step in the cement manufacturing process, the ‘clinker’, is directly targeted by low-carbon cement in order to reduce carbon emissions. There are numerous approaches to accomplish this, including:

Green cement is a product that is friendly to the environment and reduces the carbon footprint of cement production.

  • Reducing the amount of clinker used in cement by substituting a portion of it with alternatives called supplementary cementitious materials, or SCMs
  • Readjusting the way clinker is made by reducing the amount of limestone in feedstocks or modifying the calcination process
  • Reformulating cement chemistries by developing new binders based on novel materials and low-carbon processes.

Supply-Side Restrictions Stranded Resources
It costs between $200 million and $300 million to build a plant that can produce one million tonnes of ordinary Portland cement, the most widely used type of cement. Since there are currently more than 2,000 cement kilns in use, the industry is very resistant to any solution that calls for a redesign of manufacturing facilities.

Raw Material Availability
Cement is a low-value product that is consumed in enormous quantities, so the raw inputs need to be cheap, reliable and plentiful.

Efficiency of carbon capture process can be Improved with creative kiln designs.

Sales-Marketing Barriers Customer Unrest
Because safety is typically the top priority for engineers, architects and contractors, they prefer to use a reliable and well-known product. Low-carbon cements could differ from conventional OPC in terms of their setting times or early strength. This may lead to the perception that these products are risky, expensive or challenging to use.

Broken Value Chain
Numerous players participate in the construction industry at various stages of the project. This further discourages the use of alternative products by reinforcing the desire to use standardised, predictable and consistent products.

Testing Standards
Current testing standards for cements and concrete are highly prescriptive, often dictating the exact composition required for specific applications. These standards have been designed for OPC and may not be suitable for assessing the true performance of cements based on new chemistries. Setting new standards can take decades, and adoption by customers can be even slower.

Way Forward for Low Carbon or Green Cement
Low-carbon cements are a crucial way to significantly reduce emissions from cement production, despite these legitimate worries. Although there has never been a market for low-carbon cements, large corporations, government organisations, and real estate developers are all demanding solutions to lower the carbon footprints of their infrastructure and buildings, which is mandating pilot scale studies and venture capital interest in this field.

Conclusion
The potential of low-carbon cement cannot be made successful by only cement and concrete manufactures alone. Scaling innovation will require support from and collaboration among a diverse set of people like, cement manufacturers, builders, government and investors, whose input will be crucial at different stages of this project.

ABOUT THE AUTHOR:
Dr S B Hegde is a Professor at Jain University, Karnataka, India and also a Visiting Professor of Pennsylvania State University, United States of America. He had occupied ‘Leadership Positions’ in major and top cement companies in India and overseas. He has published more than 150 research papers in national and international journals. Dr Hegde is a recipient of the ‘Global Visionary’ Award in 2020.

Concrete

FORNNAX Appoints Dieter Jerschl as Sales Partner for Central Europe

Published

on

By

Shares



FORNNAX TECHNOLOGY has appointed industry veteran Dieter Jerschl as its new sales partner in Germany to strengthen its presence across Central Europe. The partnership aims to accelerate the adoption of FORNNAX’s high-capacity, sustainable recycling solutions while building long-term regional capabilities.

FORNNAX TECHNOLOGY, one of the leading advanced recycling equipment manufacturers, has announced the appointment of a new sales partner in Germany as part of its strategic expansion into Central Europe. The company has entered into a collaborative agreement with Mr. Dieter Jerschl, a seasoned industry professional with over 20 years of experience in the shredding and recycling sector, to represent and promote FORNNAX’s solutions across key European markets.

Mr. Jerschl brings extensive expertise from his work with renowned companies such as BHS, Eldan, Vecoplan, and others. Over the course of his career, he has successfully led the deployment of both single machines and complete turnkey installations for a wide range of applications, including tyre recycling, cable recycling, municipal solid waste, e-waste, and industrial waste processing.

Speaking about the partnership, Mr. Jerschl said,
“I’ve known FORNNAX for over a decade and have followed their growth closely. What attracted me to this collaboration is their state-of-the-art & high-capacity technology, it is powerful, sustainable, and economically viable. There is great potential to introduce FORNNAX’s innovative systems to more markets across Europe, and I am excited to be part of that journey.”

The partnership will primarily focus on Central Europe, including Germany, Austria, and neighbouring countries, with the flexibility to extend the geographical scope based on project requirements and mutual agreement. The collaboration is structured to evolve over time, with performance-driven expansion and ongoing strategic discussions with FORNNAX’s management. The immediate priority is to build a strong project pipeline and enhance FORNNAX’s brand presence across the region.

FORNNAX’s portfolio of high-performance shredding and pre-processing solutions is well aligned with Europe’s growing demand for sustainable and efficient waste treatment technologies. By partnering with Mr. Jerschl—who brings deep market insight and established industry relationships—FORNNAX aims to accelerate adoption of its solutions and participate in upcoming recycling projects across the region.

As part of the partnership, Mr. Jerschl will also deliver value-added services, including equipment installation, maintenance, and spare parts support through a dedicated technical team. This local service capability is expected to ensure faster project execution, minimise downtime, and enhance overall customer experience.

Commenting on the long-term vision, Mr. Jerschl added,
“We are committed to increasing market awareness and establishing new reference projects across the region. My goal is not only to generate business but to lay the foundation for long-term growth. Ideally, we aim to establish a dedicated FORNNAX legal entity or operational site in Germany over the next five to ten years.”

For FORNNAX, this partnership aligns closely with its global strategy of expanding into key markets through strong regional representation. The company believes that local partnerships are critical for navigating complex market dynamics and delivering solutions tailored to region-specific waste management challenges.

“We see tremendous potential in the Central European market,” said Mr. Jignesh Kundaria, Director and CEO of FORNNAX.
“Partnering with someone as experienced and well-established as Mr. Jerschl gives us a strong foothold and allows us to better serve our customers. This marks a major milestone in our efforts to promote reliable, efficient and future-ready recycling solutions globally,” he added.

This collaboration further strengthens FORNNAX’s commitment to environmental stewardship, innovation, and sustainable waste management, supporting the transition toward a greener and more circular future.

 

Continue Reading

Concrete

Budget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook

Published

on

By

Shares



Higher capex, city-led growth and CCUS funding improve demand visibility and decarbonisation prospects for cement

Mumbai

Cement manufacturers have welcomed the Union Budget 2026–27’s strong infrastructure thrust, with public capital expenditure increased to Rs 12.2 trillion, saying it reinforces infrastructure as the central engine of economic growth and strengthens medium-term prospects for the cement sector. In a statement, the Cement Manufacturers’ Association (CMA) has welcomed the Union budget 2026-27 for reinforcing the ambitions for the nation’s growth balancing the aspirations of the people through inclusivity inspired by the vision of Narendra Modi, Prime Minister of India, for a Viksit Bharat by 2047 and Atmanirbharta.

The budget underscores India’s steady economic trajectory over the past 12 years, marked by fiscal discipline, sustained growth and moderate inflation, and offers strong demand visibility for infrastructure linked sectors such as cement.

The Budget’s strong infrastructure push, with public capital expenditure rising from Rs 11.2 trillion in fiscal year 2025–26 to Rs 12.2 trillion in fiscal year 2026–27, recognises infrastructure as the primary anchor for economic growth creating positive prospects for the Indian cement industry and improving long term visibility for the cement sector. The emphasis on Tier 2 and Tier 3 cities with populations above 5 lakh and the creation of City Economic Regions (CERs) with an allocation of Rs 50 billion per CER over five years, should accelerate construction activity across housing, transport and urban services, supporting broad based cement consumption.

Logistics and connectivity measures announced in the budget are particularly significant for the cement industry. The announcement of new dedicated freight corridors, the operationalisation of 20 additional National Waterways over the next five years, the launch of the Coastal Cargo Promotion Scheme to raise the modal share of waterways and coastal shipping from 6 per cent to 12 per cent by 2047, and the development of ship repair ecosystems should enhance multimodal freight efficiency, reduce logistics costs and improve the sector’s carbon footprint. The announcement of seven high speed rail corridors as growth corridors can be expected to further stimulate regional development and construction demand.

Commenting on the budget, Parth Jindal, President, Cement Manufacturers’ Association (CMA), said, “As India advances towards a Viksit Bharat, the three kartavya articulated in the Union Budget provide a clear context for the Nation’s growth and aspirations, combining economic momentum with capacity building and inclusive progress. The Cement Manufacturers’ Association (CMA) appreciates the Union Budget 2026-27 for the continued emphasis on manufacturing competitiveness, urban development and infrastructure modernisation, supported by over 350 reforms spanning GST simplification, labour codes, quality control rationalisation and coordinated deregulation with States. These reforms, alongside the Budget’s focus on Youth Power and domestic manufacturing capacity under Atmanirbharta, stand to strengthen the investment environment for capital intensive sectors such as Cement. The Union Budget 2026-27 reflects the Government’s focus on infrastructure led development emerging as a structural pillar of India’s growth strategy.”

He added, “The Rs 200 billion CCUS outlay for various sectors, including Cement, fundamentally alters the decarbonisation landscape for India’s emissions intensive industries. CCUS is a significant enabler for large scale decarbonisation of industries such as Cement and this intervention directly addresses the technology and cost requirements of the Cement sector in context. The Cement Industry, fully aligned with the Government of India’s Net Zero commitment by 2070, views this support as critical to enabling the adoption and scale up of CCUS technologies while continuing to meet the Country’s long term infrastructure needs.”

Dr Raghavpat Singhania, Vice President, CMA, said, “The government’s sustained infrastructure push supports employment, regional development and stronger local supply chains. Cement manufacturing clusters act as economic anchors across regions, generating livelihoods in construction, logistics and allied sectors. The budget’s focus on inclusive growth, execution and system level enablers creates a supportive environment for responsible and efficient expansion offering opportunities for economic growth and lending momentum to the cement sector. The increase in public capex to Rs 12.2 trillion, the focus on Tier 2 and Tier 3 cities, and the creation of City Economic Regions stand to strengthen the growth of the cement sector. We welcome the budget’s emphasis on tourism, cultural and social infrastructure, which should broaden construction activity across regions. Investments in tourism facilities, heritage and Buddhist circuits, regional connectivity in Purvodaya and North Eastern States, and the strengthening of emergency and trauma care infrastructure in district hospitals reinforce the cement sector’s role in enabling inclusive growth.”

CMA also noted the Government’s continued commitment to fiscal discipline, with the fiscal deficit estimated at 4.3 per cent of GDP in FY27, reinforcing macroeconomic stability and investor confidence.

Continue Reading

Concrete

Steel: Shielded or Strengthened?

CW explores the impact of pro-steel policies on construction and infrastructure and identifies gaps that need to be addressed.

Published

on

By

Shares



Going forward, domestic steel mills are targeting capacity expansion
of nearly 40 per cent through till FY31, adding 80-85 mt, translating
into an investment pipeline of $ 45-50 billion. So, Jhunjhunwala points
out that continuing the safeguard duty will be vital to prevent a surge
in imports and protect domestic prices from external shocks. While in
FY26, the industry operating profit per tonne is expected to hold at
around $ 108, similar to last year, the industry’s earnings must
meaningfully improve from hereon to sustain large-scale investments.
Else, domestic mills could experience a significant spike in industry
leverage levels over the medium term, increasing their vulnerability to
external macroeconomic shocks.(~$ 60/tonne) over the past one month,
compressing the import parity discount to ~$ 23-25/tonne from previous
highs of ~$ 70-90/tonne, adds Jhunjhunwala. With this, he says, “the
industry can expect high resistance to further steel price increases.”

Domestic HRC prices have increased by ~Rs 5,000/tonne
“Aggressive
capacity additions (~15 mt commissioned in FY25, with 5 mt more by
FY26) have created a supply overhang, temporarily outpacing demand
growth of ~11-12 mt,” he says…

To read the full article Click Here

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds