Connect with us

Concrete

We are geared up for adoption of carbon reducing technologies

Published

on

Shares

Manish Toshniwal, Vice President and Mines Head, JK Cement, talks about the various aspects of sustainable mining.

Tell us about the volume of mined raw materials and fuels consumed by your organisation annually.
Limestone is a major raw material for cement manufacturing mined from our captive limestone mine, with consumption of over 10.0 million tonnes per annum, and the fuel (high speed diesel) being consumed at the rate of 0.42 litres per tonne of limestone.

What are the conveyor channels used to carry the mined materials to the plants?
Limestone is majorly conveyed through OverLand Belt Conveyor (OLBC) from the mine crusher to the plant. OLBC stretched up to a distance of 7.5 km crossing highway and railway tracks, and covered completely with rain hood along with acoustic hood provided near habitant areas to minimise dust and noise pollution, and reducing carbon footprints.

Mining leads to depletion of natural resources. Is there any action taken to combat the same?
The availability of natural resources is limited and mining leads to depletion of natural resources. It is quite important that on the one hand we meet the needs of the present, and on the other, we conserve natural resources to meet future needs. We have taken various actions for mineral conservation as below:

  • Detailed exploration was carried out in G1 Category under UNFC Classification for reassessment of the deposit. It is well supported in optimum utilisation and blending of different grades of minerals from depth. It resulted in enhancement of proven reserves and in turn the mine life.
  • The data obtained from exploration was converted into a geological database in SURPAC software to determine the extent of the ore deposit and its geo-statistical characteristics.
  • The total volume of reserves is estimated by developing a solid block model comprising all bore hole data. Mine planning is carried out by dividing the ore body into suitable blocks and sub blocks. Suitable ultimate pit depth selected from which mine pit is designed. With this, the different grades of mineral blended effectively for optimum utilisation and consumption of low-grade minerals. The sub grade minerals, which are lower than cutoff grade minerals, are consumed by adding high-grade limestone (sweetener) procured from nearby areas for their effective utilisation, leading to increase in mine life.
  • In a few block areas, clay was found interbedded with limestone, which needed to be separated to improve the quality of limestone. A screen reject separator installed with a crusher, which separates out the clay through a reject belt conveying system, and only the clean limestone is transported to the plant. It results in more quantity of low-grade utilisation and consumption from mine.
  • Real time production data is monitored continuously including quality, quantity and productivity. Cross-belt analyser installed at conveying belt, which is linked with Automated XRF analyser.

How does your organisation address the issue of dust pollution and noise pollution while mining and grinding limestone?
The key effective measures taken for combating the dust and noise pollution while mining and crushing of limestone are as below:

A high-pressure jet is installed in water tankers to wet the blasted muck before loading of limestone, to minimise the fugitive emissions during loading.

Automated stationary water sprinklers installed along haul roads and cold dry fogging in crushing units were installed, which proved to be effective in fugitive dust control. Moreover, it resulted in reduction of water consumption to half per square metre of haul road as compared to mobile water sprinkling.

The limestone from the crusher is transported to the plant by closed conveyor belts to control dust generation. The conveyor system stretched from the crusher to the plant covering a distance of 7.5 km crossing highway and railway lines.

The drill machines are automated and equipped with wet drilling systems. The green belt developed all along the periphery of the lease boundary or ultimate pit limit boundary and on both sides of the roads.

There are continuous on-line ambient air quality monitoring stations (CAAQMS) installed at various locations. All the on-line monitoring stations are connected with SPCB site for capturing real time data. The drone survey of mining lease is carried out as per provisions of MCDR.

What is the technology behind mining of limestone for the cement process?
What is its impact on the productivity of the organisation?

Mine planning and scheduling carried out using SURPAC block modelling for developing scientific and systematic formation of benches in the ore body.
To enhance equipment and workforce productivity, higher capacity equipment deployed in mine. Fleet Management System (FMS) implemented in mine. Fleet management system upgraded subsequently to maintain real time health monitoring system to attain high reliability, real time quality monitoring system, real time productivity monitoring systems to capture, monitor and analyse various KPI’s.
Controlled blasting techniques are in practice at the mine. Nonel initiation system is used to limit the fly rocks and ground Vibrations. The haul roads and ramps are designed to always maintain the shortest lead. The haul roads were maintained with road graders and compactors for attaining shorter cycle time of equipment used for transportation of limestone from mine to crusher.

Tell us about the efforts taken by your organisation to make limestone mining a sustainable process?
Mining can become more sustainable by developing and integrating practices that ensure cost effective mining, reduce the environmental impacts of mining operations, improve socio economic development of people, and comply with statutory obligations. The various measures adopted by us to make limestone mining a sustainable process are:

  • Higher capacity equipment is deployed in the mines that are highly productive and cost effective. A highly skilled workforce is deployed to attain higher output per man shift. It has resulted in reduction of mining costs.
  • Conveying of limestone through OLBC from the mine crusher to the plant, stretching up to 7.5 km crossing highway and railway lines, has resulted in improved productivity, cost effective mining while mitigating environmental hazards like carbon emissions and dust generation associated with road transportation.
  • Massive plantations have been taken up for conservation of flora and fauna in the mines.
  • So far, the plantation drive in mines involves planting 4,07,294 saplings covering an area of 158.07 hectares.
  • The development of bio diversity park, to create safe and secure habitat for local flora and fauna to improve the ecological footprint of the mine, spreads over an area of 50.0 hectares. The park will be developed in three phases with a total of 50,000 saplings and is targeted to be complete by FY 2024-25. In the first phase, planting of saplings of a variety of species in consultation with DFO to the tune of 25,000 is under process.
  • The mining equipment is loaded with safety features as required by DGMS. A Safety Management plan is prepared and implemented in the mine through which the workers’ participation in safety management is promoted. Both internal and third-party authorities conduct safety audits.
  • By installing solar panels and fulfilling power consumption of the mines through solar energy, the mine is able to reduce its carbon footprint to a considerable extent.
  • Vocational training is imparted on various H&S aspects. The mine has a well equipped Group VTC with internal and external trainers. On the job training is imparted through OEM trainers for skill upgradation and capacity building.
  • Water harvesting measures are implemented such as construction of storm water drains and ponds within the mine area for storage of rainwater, artificial ground water aquifer recharge structures to improve the groundwater level and collection of rainwater in mine-pits. Our rainwater harvesting activities are beneficial to the mine as well as to the community surrounding mines. Water ponds constructed in the surrounding villages and water infrastructures have been created to supply water from the mine to these ponds for agriculture, livestock etc.
  • The mine has also undertaken well appreciated CSR activities, which are aligned with the pressing needs of the nation – public health and sanitation, education, water infrastructure to provide water for irrigation and drinking, infrastructure development etc. We have built schools, colleges, training institutes, hospitals, temples and other social infrastructure as a part of our community intervention.

Tell us about the government compliances that your organisation strictly adheres to.
The mining activities are carried out as per the Mining Plan approved by Indian Bureau of Mines under the Mineral Conservation and Development Rules (MCDR) amended as on date, and all the provisions of MCDR are complied with. The technical aspects are complied as per provisions of the Metalliferous Mining Regulations (MMR), to ensure safe operations in the mine. The welfare of mine employees as per provisions of Mines Rules and Mines Act amended as on date under DGMS directives and guidelines are complied with. The records, registers and returns are regularly submitted to concerned authorities as prescribed within the timelines. The conditions of Environment Clearances, CTE and CTO are complied with, as per provisions of the Air and Water Act amended as on date and as per MOEF/SPCB directives and guidelines.

What are your plans to make mining a sustainable process for the cement business?
To achieve climate change targets, we are geared up for adoption of carbon reducing technologies like use of alternative fuels such as LNG, hydrogen powered base mining equipment, integrating electrification with automation and digital systems as well as the use of renewable energy, recycling and reuse for minimising the amount of waste produced.

Kanika Mathur

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares



The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares



JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares



Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds