Connect with us

Concrete

Our next target is to further reduce heat consumption

Published

on

Shares

AK Dembla, President & Managing Director, Humboldt Wedag India Pvt Ltd, sheds light on the positive effect of pyroprocessing and technology in cement production, and its ultimate impact on efficiency and profitability.

Tell us about the key areas where pyroprocessing has evolved since the 1950s?
In the 1950s, pyroprocessing was at a very nascent stage. There used to be wet process plants and heat consumption used to be around 1400 to 1600 kCal/kg clinker. In 1956, the first 4-stage preheater technology was developed and KHD was a pioneer in it. This reduced the heat consumption to 800 kCal/kg clinker and subsequently there was a development of the calciner technology which further optimised the heat consumption and increased the kiln productivity. The technology since then has been developing and we have now been able to bring down the heat consumption to 680 to 685 kCal/kg clinker. This has been a major step that has been achieved by the industry.
Our next target is to further reduce heat consumption either through substitution with alternative fuels or through some low temperature cements. We are trying to make this possible with the current methodologies in place. However, if there is a technological disruption, then the case may differ.

How is your technology helping reduce the carbon footprint?
As mentioned, in the area of heat consumption, we have been able to bring it down to almost half of what it was right at the beginning (early 1950) and that has been a major step in the reduction of carbon footprint. Another major step is the use of alternative fuel which is used on an average at
6 per cent in the Indian cement industry, some plants even use it up to 20 per cent. So, whatever alternative fuel we use, equivalent heat we calculate because it comes through a circular economy. And that much heat is saved, thus, reducing the carbon footprint
as well.
The industry is also working on reducing
the clinker factor in cement. Initially there was a demand for OPC, but when PPC started being popularised in early 2000 (July 2000) when the government had allowed up to 35 per cent flyash as additive in blended cement, the clinker factor substantially reduced, thus, majorly reducing the carbon footprint of the industry. Similarly, more blended cements started getting introduced by the cement makers to reduce the carbon footprint and with advancement of technology and research, the industry is gearing up to achieve net zero in concrete (final product from cement) by 2050.

How has your equipment adapted to the changing raw mix and fuels?
The good thing about using alternative fuels is that if its use is planned initially, then the process can be designed/ adapted for it. The limitation of using alternative fuel in an existing plant is to use extra equipment like shredders, preparation units for plastic waste or municipal waste or agriculture waste or hazardous waste etc. Another limitation is that the amount of alternative fuel that can be fed in the existing system can go up to 20 per cent, beyond that there is a need to modify the calciner system or add equipment for proper combustion of waste apart from the problem of bypassing minor constituents like chloride etc. For new plants that plan to use alternative fuels, we provide them with additional equipment like combustion chamber, pyro-rotor etc. that helps cement makers accommodate a higher percentage (more than 80 per cent of calciner fuel) of alternative fuels in their manufacturing process. We also investigate environmental aspects like emission of NOx and handling of minor constituents in initial design.
How has your equipment impacting the profitability for cement manufacturers?
It is our endeavour to design our equipment on parameters that are industry standard with
state-of-the-art technology. We ensure that the power consumption and use of thermal energy should be at a minimum and the productivity of the pyro-system and the grinding systems should be at its best.
Apart from design of the system and abiding by the industry standards, we do a cost comparative analysis for coal versus alternative fuels for the manufacturer, we research on layouts to bring low civil and mechanical consumption weight-wise. There are multiple efforts taken by suppliers like us to optimise the system on all fronts as it is a competitive market. Our target is to help cement makers have a lesser capital investment to ease their financial repayments and plant operations are better in productivity and output.

What is the role of automation and technology in your workings for the pyroprocessing system?
The pandemic era nudged us to explore the use of lesser manpower and include automations in our systems. There were mainly two issues: dependency on manpower and misconception that automation means a higher cost. However, that is not true. If automation is included in systems, moving towards artificial intelligence, digitisation and Industry 4.0 Standards, experts have concluded that data can be retrieved on the go and optimise processes in real time which saves costs.
In recent years, automation and technology has become a big part of the industry with equipment and sensors being installed to get data that goes through the cloud to experts and is available globally for analysis and feedback in real time. This is helping the industry increase its productivity and reducing downtime by understanding and anticipating the attention required in a particular process at a particular time. This trend is expected to mature further with time throughout the cement industry.

How do you envision the future of the cement industry with your technology
and equipment?

At present, we are putting in a lot of effort on research and development in the area of reducing carbon footprint. The main equipment and system that we are currently installing in cement plants support alternative fuels, wastes as raw material, cogeneration and blended cements. The future holds the use of solar energy and wind energy as the source of substantial power for the cement plants. The industry must also look towards having the process of calcination without fossil fuels and with the use of electrical energy produced from green hydrogen, and use of technology like oxyfuel etc. A lot of research is on-going, which may take about 5 to 15 years to be implemented, but the alternative energy sources like green hydrogen and use of oxyfuel etc., shall have been made possible to bring down the carbon footprint to zero in concrete is a big ambition for the industry. Researchers are also working on the technology where carbon can be captured, stored, and re-used.
With our processes and systems also adapting to continuous research and evolving technology, together with the cement industry we shall build solutions that ensure sustainability and reduce carbon footprint. This is what I envision for the future.

Concrete

Construction Costs Rise 11% in 2024, Driven by Labour Expenses

Cement Prices Decline 15%, But Labour Costs Surge by 25%

Published

on

By

Shares



The cost of construction in India increased by 11% over the past year, primarily driven by a 25% rise in labour expenses, according to Colliers India. While prices of key materials like cement dropped by 15% and steel saw a marginal 1% decrease, the surge in labour costs stretched construction budgets across sectors.

“Labour, which constitutes over a quarter of construction costs, has seen significant inflation due to the demand for skilled workers and associated training and compliance costs,” said Badal Yagnik, CEO of Colliers India.

The residential segment experienced the sharpest cost escalation due to a growing focus on quality construction and demand for gated communities. Meanwhile, commercial and industrial real estate remained resilient, with 37 million square feet of office space and 22 million square feet of warehousing space completed in the first nine months of 2024.

“Despite rising costs, investments in automation and training are helping developers address manpower challenges and streamline project timelines,” said Vimal Nadar, senior director at Colliers India.

With labour costs continuing to influence overall construction expenses, developers are exploring strategies to optimize operations and mitigate rising costs.

Continue Reading

Concrete

Swiss Steel to Cut 800 Jobs

Job cuts due to weak demand

Published

on

By

Shares



Swiss Steel has announced plans to cut 800 jobs as part of a restructuring effort, triggered by weak demand in the global steel market. The company, a major player in the European steel industry, cited an ongoing slowdown in demand as the primary reason behind the workforce reduction. These job cuts are expected to impact various departments across its operations, including production and administrative functions.

The steel industry has been facing significant challenges due to reduced demand from key sectors such as construction and automotive manufacturing. Additionally, the broader economic slowdown in Europe, coupled with rising energy costs, has further strained the profitability of steel producers like Swiss Steel. In response to these conditions, the company has decided to streamline its operations to ensure long-term sustainability.

Swiss Steel’s decision to cut jobs is part of a broader trend in the steel industry, where companies are adjusting to volatile market conditions. The move is aimed at reducing operational costs and improving efficiency, but it highlights the continuing pressures faced by the manufacturing sector amid uncertain global economic conditions.

The layoffs are expected to occur across Swiss Steel’s production facilities and corporate offices, as the company focuses on consolidating its workforce. Despite these cuts, Swiss Steel plans to continue its efforts to innovate and adapt to market demands, with an emphasis on high-value, specialty steel products.

Continue Reading

Concrete

UltraTech Cement to raise Rs 3,000 crore via NCDs to boost financial flexibility

UltraTech reported a 36% year-on-year (YoY) decline in net profit, dropping to Rs 825 crore

Published

on

By

Shares



UltraTech Cement, the Aditya Birla Group’s flagship company, has announced plans to raise up to Rs 3,000 crore through the private placement of non-convertible debentures (NCDs) in one or more tranches. The move aims to strengthen the company’s financial position amid increasing competition in the cement sector.

UltraTech’s finance committee has approved the issuance of rupee-denominated, unsecured, redeemable, and listed NCDs. The company has experienced strong stock performance, with its share price rising 22% over the past year, boosting its market capitalization to approximately Rs 3.1 lakh crore.

For Q2 FY2025, UltraTech reported a 36% year-on-year (YoY) decline in net profit, dropping to Rs 825 crore, below analyst expectations. Revenue for the quarter also fell 2% YoY to Rs 15,635 crore, and EBITDA margins contracted by 300 basis points. Despite this, the company saw a 3% increase in domestic sales volume, supported by lower energy costs.

In a strategic move, UltraTech invested Rs 3,954 crore for a 32.7% equity stake in India Cements, further solidifying its position in South India. UltraTech holds an 11% market share in the region, while competitor Adani holds 6%. UltraTech also secured $500 million through a sustainability-linked loan, underscoring its focus on sustainable growth driven by infrastructure and housing demand.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds