Connect with us

Concrete

Efficient grinding unit selection impacts profitability

Published

on

Shares

ICR gets Vimal Jain, Director – Technical, HeidelbergCement India, to share his views about the innovations in technology of the grinding process and grinding aids as well as his understanding on how the entire process can be made more energy-efficient and cost-effective.

Explain the grinding process in cement manufacturing.
The grinding process is needed to create surface area for a good chemical reaction and reactivity to occur in cement manufacturing. The grinding process is mainly required for raw material, coal and clinker grinding in the cement manufacturing process.
The process of cement manufacturing involves grinding clinker granules along with blending materials or additives and gypsum to produce a fine powder called cement. Depending on the quality of clinker and type of cement, blending material/gypsum are added in controlled proportion to produce a quality product to meet the prescribed quality as per given codes.
Optimum fineness needs to be found for the type of raw materials, coal, and clinker to avoid over-grinding, which comes with ‘excess energy’ consumption and has a negative impact on quality and cost.
The quality of cement depends on its physical and chemical properties. Technology has advanced over the period and the grinding process can help in augmenting some properties of cement.

Tell us about the equipment used for grinding raw material and clinker.
The main equipment used for grinding raw materials and clinker are categorised based on their size reduction concept and mechanism as,
Ball Mill (BM):
Size reduction mechanism –

  1. Impact: particle breakage by a single rigid force causing fracture.
  2. Attrition or Abrasion: arising from particles scraping against one another or against a
    rigid surface.
    Ball mills are the most widely installed grinding equipment in the cement industry. It consists of a rotating cylinder filled with steel balls that tumble inside the mill, applying impact and friction forces to the clinker particles. For better grinding efficiency, the mill may be operated with one, two or three internal compartments separated by diaphragms that prevent the transfer of the balls between the compartments while allowing the flow of the ground material through the mill.
    Roller Press (RP)
    Size reduction mechanism – Compression: particle disintegration by two rigid forces.
    The roller press has been extensively used as a pre-grinder as well as a stand-alone cement mill. It compresses the material in a gap between two counter-rotating grinding rollers lined with wear-resistant material. The output product contains fine and coarse particles with a large number of cracks and weak points that significantly reduce the energy requirement during the further stage of fine grinding.
    Vertical Roller Mill (VRM)
    Size reduction mechanism –
  3. Compression
  4. Shear or Chipping: produced by fluid or particle-particle interaction.
  5. Attrition or Abrasion
    In a vertical roller mill, two-four rollers turning on their axles press on a rotating grinding table mounted on the yoke of a gearbox. Pressure is exerted hydraulically. This mill also has a built-in high-efficiency separator above the rollers. The vertical roller mills offer high drying capacity, comparatively low energy consumption, and compactness.
    Hybrid Grinding: a combination of Ball Mill with Roller press
    Horo Mill (HM): it is similar to the vertical mill but the roller arrangement differs from VRM.
    In the ball mill, RP and Combined grinding system separation take place outside the grinding mill, whereas in the VRM separation and grinding take place in one system.
    The technologies involved in cement can be classified as per the following:
    Intergrinding: With the intergrinding process, all components of the blended cement are ground together. In that way, the cement is homogenised during the grinding, and at the cement plant only one silo is needed. Because of interactions between the different cement components due to differences in grindability, the PSD of the blended cement and the different components is difficult to control due to differential grindability due to different hardness of materials. Equipment for the inter grindings are Ball mills, roll press/ Pre-grinder + Ball mill, Horo mill, and VRMs.
    Separate grinding: The separate grinding process is grinding the various components separately, storing them, and mixing them according to the desired proportions. This process has several advantages: the PSD of each component and of the blended cement can be controlled according to the components’ hardness and required fineness, and appropriate grinding equipment can be used for each component. But in this case, several silos for storage are needed at the cement plant. Equipment for separate grinding is all the grinding equipment mentioned above, with the use of blenders required to blend the grounded material in the proportion needed for the specific cement product.
    The advantage of separate grinding can be to produce a wide range of cements from one plant.
    Grinding systems are either ‘open circuit’ or ‘closed circuit.’ In an open circuit system, the feed rate of the incoming clinker is adjusted to achieve the desired fineness of the product. In a closed circuit system, coarse particles are separated from the finer product and returned for further grinding.

What are the key functionalities that are looked at while installing a grinding unit in your plant?
The key factors, which shall be carefully considered, include:

  • Product quality requirement: market requirement
  • Machine sizing and layout: investment cost
  • Raw materials quality and characteristics: input materials
  • Mechanical design: maintenance cost and reliability
  • Latest design innovations including high grinding efficiency, energy saving and environmental protection, good quality of finished products, etc., performance improvement
  • On-demand changes: project-specific requirement
  • Product diversification: commercial reasons
  • Capex vs Opex economics: budget
  • Spare part and service availability: after-sales service

What is the contribution of grinding units in making cement-making processes efficient and productive?
The grinding unit plays an important role in making the operation efficient. Approximately 60 per cent of the cement power is absorbed in the grinding circuit, and to be competitive in the market, power cost plays an important role.
It is also observed that particle size distribution is better in the BM compared to other mills considering the product quality requirement.
The following grinding units are involved in cement making process:

  • Raw material grinding: to improve raw meal burning behavior, clinker quality, and kiln output, including thermal energy requirement
  • Coal grinding: better combustion of fuels, improves the flame property, and avoids CO2 generation, including improved burning process
  • Cement grinding: cement hydration, strength development, and water demand

How do grinding units contribute to the profitability of the cement-making process?
The grinding unit contributes to profitability in the following ways:
The electrical energy price is a major contributor to the cost of production. Therefore, producing cement with less energy is becoming a key element of profitability: as the grinding process consumes about 60 per cent of the total plant electrical energy demand and about 20 per cent of cement production variable cost. So efficient grinding unit selection impacts profitability of cement manufacturing. Optimum fineness needs to be found to avoid over grinding and consuming excess energy Final product PSD (particle size distribution) improves quality and profitability. Where two types of cement have identical surface areas, the cement with the narrower PSD will have a higher compressive strength.
Maximum use of low-cost blending materials, technology and layout such that the repairs and maintenance and manpower costs are lower, etc.

What are the materials and equipment that aid in the process of cement grinding?
Grinding Aid (GA):
In the grinding process, agglomeration takes place, due to this grinding efficiency is reduced and the output and quality of product effects. The GA is a very efficient way to avoid the agglomeration mechanism and improve the over-grinding efficiency. Therefore, GA helps to increase the grinding mill output and reduces
the electrical energy consumption, resulting in improving profitability.
Performance Enhancers/Quality Improvers: Due to the quality of raw materials and variation in the burning process, desired clinker phase formation does not take place, which impacts the cement performance, workability, and durability. Therefore, in addition to a grinding aid, additional chemicals are used to improve the cement performance and properties, such as setting time and strength development
Functional Additives: The additive imparts a specific property, such as air entrainment in masonry cement or chromium (VI) reduction.
Supplementary Cementitious Materials (SCM): Supplementary Cementitious Materials (SCMs) are added to cement mixtures for various reasons, including improving durability, decreasing permeability, aiding in pumpability, mitigating alkali reactivity, and improving the overall hardened properties of concrete. This also helps to reduce the carbon dioxide footprint in cement manufacturing. The use of SCMs also reduces the dependency on natural resources and enhances the circular economy.
Equipment: Raw materials storage, dosing station, raw material transport conveyors/elevators, weigh feeders, air separators, baghouse, product transport and storage silos are the key equipment of the grinding units.
Air Separator is one of the vital equipment for grinding systems that plays a significant role in maintaining product quality and increasing the grinding system productivity.
QC Lab: It’s a must for sampling and testing so that consistent quality material is produced and supplied to customers.

How do you ensure standards in the process?
During manufacturing, quality control parameters are established with reference to the national standards, and accordingly, the sampling and testing plan of the company is maintained.
There are very well descriptive quality control and assurance plans at various stages of the manufacturing/operations.
At each of our plants, we have state-of-the-art laboratories to produce quality cement much above the spec from the BIS. We have a very low standard deviation in the finished product that indicates the consistency in the cement. We are certified with applicable ISO standards to ensure that the product supplied is safe, environmentally compliant, and quality consistent.

How often is the same monitored?
Cement manufacturing is a continuous process and monitoring is done in 24×7 mode to ensure cement quality.
The quality control starts from the mine to the cement packing, and there are well-defined testing protocols at a sampling frequency. Plants are equipped with various material feeding and transportation systems to maintain the quality and process.

What challenges do you face in the process of cement grinding?
Availability and economics of outsourced materials are major challenges these days. The key challenges are as follows:

  • Availability of reliable and economical energy sources, power generation is becoming expensive due to increasing fuel prices and quality of fuel.
  • Right quality and Quantity of SCMs (Supplementary Cementitious Materials) are needed to achieve cement quality and also to mitigate the challenges of CO2 reduction in the cement-making process
  • Production of multiple cement types needs more storage facilities and impacts mill performance and product quality
  • SCMs with high moisture content demand drying arrangements resulting in a need for more capital as well as operational expenses.
  • Skilled manpower for operation and maintenance.

What are the innovations you would like to see in the technology of the grinding process and grinding aids?
Innovations play an important role in the cement industry. The quality of the product can be enhanced by adopting the right technology and the optimum key performance indicators for producing a quality product at a competitive price. We would like to see further innovation for:

  • Energy efficient equipment and drives to lower the power consumption
  • Separate grinding of cement to improve product quality and lower power consumption to reduce CO2 emission.
  • New hybrid formulations in grinding aid to improve product quality, specific energy consumption and reduce clinker ratio in cement.
  • Innovation for cement production by substituting max possible clinker incorporation by alternative / lower quality cementitious materials but maintaining the product quality.
  • New wear materials for enhancing the life of wear components to reduce the consumables cost per ton.

Kanika Mathur

Concrete

FORNNAX Appoints Dieter Jerschl as Sales Partner for Central Europe

Published

on

By

Shares



FORNNAX TECHNOLOGY has appointed industry veteran Dieter Jerschl as its new sales partner in Germany to strengthen its presence across Central Europe. The partnership aims to accelerate the adoption of FORNNAX’s high-capacity, sustainable recycling solutions while building long-term regional capabilities.

FORNNAX TECHNOLOGY, one of the leading advanced recycling equipment manufacturers, has announced the appointment of a new sales partner in Germany as part of its strategic expansion into Central Europe. The company has entered into a collaborative agreement with Mr. Dieter Jerschl, a seasoned industry professional with over 20 years of experience in the shredding and recycling sector, to represent and promote FORNNAX’s solutions across key European markets.

Mr. Jerschl brings extensive expertise from his work with renowned companies such as BHS, Eldan, Vecoplan, and others. Over the course of his career, he has successfully led the deployment of both single machines and complete turnkey installations for a wide range of applications, including tyre recycling, cable recycling, municipal solid waste, e-waste, and industrial waste processing.

Speaking about the partnership, Mr. Jerschl said,
“I’ve known FORNNAX for over a decade and have followed their growth closely. What attracted me to this collaboration is their state-of-the-art & high-capacity technology, it is powerful, sustainable, and economically viable. There is great potential to introduce FORNNAX’s innovative systems to more markets across Europe, and I am excited to be part of that journey.”

The partnership will primarily focus on Central Europe, including Germany, Austria, and neighbouring countries, with the flexibility to extend the geographical scope based on project requirements and mutual agreement. The collaboration is structured to evolve over time, with performance-driven expansion and ongoing strategic discussions with FORNNAX’s management. The immediate priority is to build a strong project pipeline and enhance FORNNAX’s brand presence across the region.

FORNNAX’s portfolio of high-performance shredding and pre-processing solutions is well aligned with Europe’s growing demand for sustainable and efficient waste treatment technologies. By partnering with Mr. Jerschl—who brings deep market insight and established industry relationships—FORNNAX aims to accelerate adoption of its solutions and participate in upcoming recycling projects across the region.

As part of the partnership, Mr. Jerschl will also deliver value-added services, including equipment installation, maintenance, and spare parts support through a dedicated technical team. This local service capability is expected to ensure faster project execution, minimise downtime, and enhance overall customer experience.

Commenting on the long-term vision, Mr. Jerschl added,
“We are committed to increasing market awareness and establishing new reference projects across the region. My goal is not only to generate business but to lay the foundation for long-term growth. Ideally, we aim to establish a dedicated FORNNAX legal entity or operational site in Germany over the next five to ten years.”

For FORNNAX, this partnership aligns closely with its global strategy of expanding into key markets through strong regional representation. The company believes that local partnerships are critical for navigating complex market dynamics and delivering solutions tailored to region-specific waste management challenges.

“We see tremendous potential in the Central European market,” said Mr. Jignesh Kundaria, Director and CEO of FORNNAX.
“Partnering with someone as experienced and well-established as Mr. Jerschl gives us a strong foothold and allows us to better serve our customers. This marks a major milestone in our efforts to promote reliable, efficient and future-ready recycling solutions globally,” he added.

This collaboration further strengthens FORNNAX’s commitment to environmental stewardship, innovation, and sustainable waste management, supporting the transition toward a greener and more circular future.

 

Continue Reading

Concrete

Budget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook

Published

on

By

Shares



Higher capex, city-led growth and CCUS funding improve demand visibility and decarbonisation prospects for cement

Mumbai

Cement manufacturers have welcomed the Union Budget 2026–27’s strong infrastructure thrust, with public capital expenditure increased to Rs 12.2 trillion, saying it reinforces infrastructure as the central engine of economic growth and strengthens medium-term prospects for the cement sector. In a statement, the Cement Manufacturers’ Association (CMA) has welcomed the Union budget 2026-27 for reinforcing the ambitions for the nation’s growth balancing the aspirations of the people through inclusivity inspired by the vision of Narendra Modi, Prime Minister of India, for a Viksit Bharat by 2047 and Atmanirbharta.

The budget underscores India’s steady economic trajectory over the past 12 years, marked by fiscal discipline, sustained growth and moderate inflation, and offers strong demand visibility for infrastructure linked sectors such as cement.

The Budget’s strong infrastructure push, with public capital expenditure rising from Rs 11.2 trillion in fiscal year 2025–26 to Rs 12.2 trillion in fiscal year 2026–27, recognises infrastructure as the primary anchor for economic growth creating positive prospects for the Indian cement industry and improving long term visibility for the cement sector. The emphasis on Tier 2 and Tier 3 cities with populations above 5 lakh and the creation of City Economic Regions (CERs) with an allocation of Rs 50 billion per CER over five years, should accelerate construction activity across housing, transport and urban services, supporting broad based cement consumption.

Logistics and connectivity measures announced in the budget are particularly significant for the cement industry. The announcement of new dedicated freight corridors, the operationalisation of 20 additional National Waterways over the next five years, the launch of the Coastal Cargo Promotion Scheme to raise the modal share of waterways and coastal shipping from 6 per cent to 12 per cent by 2047, and the development of ship repair ecosystems should enhance multimodal freight efficiency, reduce logistics costs and improve the sector’s carbon footprint. The announcement of seven high speed rail corridors as growth corridors can be expected to further stimulate regional development and construction demand.

Commenting on the budget, Parth Jindal, President, Cement Manufacturers’ Association (CMA), said, “As India advances towards a Viksit Bharat, the three kartavya articulated in the Union Budget provide a clear context for the Nation’s growth and aspirations, combining economic momentum with capacity building and inclusive progress. The Cement Manufacturers’ Association (CMA) appreciates the Union Budget 2026-27 for the continued emphasis on manufacturing competitiveness, urban development and infrastructure modernisation, supported by over 350 reforms spanning GST simplification, labour codes, quality control rationalisation and coordinated deregulation with States. These reforms, alongside the Budget’s focus on Youth Power and domestic manufacturing capacity under Atmanirbharta, stand to strengthen the investment environment for capital intensive sectors such as Cement. The Union Budget 2026-27 reflects the Government’s focus on infrastructure led development emerging as a structural pillar of India’s growth strategy.”

He added, “The Rs 200 billion CCUS outlay for various sectors, including Cement, fundamentally alters the decarbonisation landscape for India’s emissions intensive industries. CCUS is a significant enabler for large scale decarbonisation of industries such as Cement and this intervention directly addresses the technology and cost requirements of the Cement sector in context. The Cement Industry, fully aligned with the Government of India’s Net Zero commitment by 2070, views this support as critical to enabling the adoption and scale up of CCUS technologies while continuing to meet the Country’s long term infrastructure needs.”

Dr Raghavpat Singhania, Vice President, CMA, said, “The government’s sustained infrastructure push supports employment, regional development and stronger local supply chains. Cement manufacturing clusters act as economic anchors across regions, generating livelihoods in construction, logistics and allied sectors. The budget’s focus on inclusive growth, execution and system level enablers creates a supportive environment for responsible and efficient expansion offering opportunities for economic growth and lending momentum to the cement sector. The increase in public capex to Rs 12.2 trillion, the focus on Tier 2 and Tier 3 cities, and the creation of City Economic Regions stand to strengthen the growth of the cement sector. We welcome the budget’s emphasis on tourism, cultural and social infrastructure, which should broaden construction activity across regions. Investments in tourism facilities, heritage and Buddhist circuits, regional connectivity in Purvodaya and North Eastern States, and the strengthening of emergency and trauma care infrastructure in district hospitals reinforce the cement sector’s role in enabling inclusive growth.”

CMA also noted the Government’s continued commitment to fiscal discipline, with the fiscal deficit estimated at 4.3 per cent of GDP in FY27, reinforcing macroeconomic stability and investor confidence.

Continue Reading

Concrete

Steel: Shielded or Strengthened?

CW explores the impact of pro-steel policies on construction and infrastructure and identifies gaps that need to be addressed.

Published

on

By

Shares



Going forward, domestic steel mills are targeting capacity expansion
of nearly 40 per cent through till FY31, adding 80-85 mt, translating
into an investment pipeline of $ 45-50 billion. So, Jhunjhunwala points
out that continuing the safeguard duty will be vital to prevent a surge
in imports and protect domestic prices from external shocks. While in
FY26, the industry operating profit per tonne is expected to hold at
around $ 108, similar to last year, the industry’s earnings must
meaningfully improve from hereon to sustain large-scale investments.
Else, domestic mills could experience a significant spike in industry
leverage levels over the medium term, increasing their vulnerability to
external macroeconomic shocks.(~$ 60/tonne) over the past one month,
compressing the import parity discount to ~$ 23-25/tonne from previous
highs of ~$ 70-90/tonne, adds Jhunjhunwala. With this, he says, “the
industry can expect high resistance to further steel price increases.”

Domestic HRC prices have increased by ~Rs 5,000/tonne
“Aggressive
capacity additions (~15 mt commissioned in FY25, with 5 mt more by
FY26) have created a supply overhang, temporarily outpacing demand
growth of ~11-12 mt,” he says…

To read the full article Click Here

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds