Connect with us

Concrete

Promoting a circular economy is the key

Published

on

Shares

Prakhar Shrivastava, Corporate Quality, JK Cement, sheds light on the use of automation and sustainability in processing gypsum.

Explain the role of gypsum in the cement manufacturing process?
Gypsum plays a crucial role in manufacturing cement. It is used to delay cement setting by slowing down the reaction of mixing cement with water to prevent rapid hardening of cement and increase its workability for construction. Gypsum enhances cement strength at all ages. If we grind the clinker without gypsum, then the cement will set immediately after mixing with water and the strength development will be lesser.

What are the proportions of gypsum that are added in various types of cements produced? Tell us in details of the composition and percentage.
Presently different types of gypsum are available and are being added to meet the SO3 in cement, like mineral gypsum, chemical, phospho, marine gypsum, anhydrite, FGD and synthetic gypsum. The composition and percentage depend on the chemistry of clinker and gypsum to adhere to the desired SO3 target in cement. Normally the percentage addition of gypsum is 5 to 8 in cement mix as per gypsum quality and its availability. Few gypsums, which have higher purity above 85 per cent like imported mineral, anhydrite and phospho gypsum usage are less, whereas, Indian mineral gypsum having purity <40 per cent required higher percentage usage to meet the SO3 requirement.

Tell us about the process of obtaining gypsum by your organisation. What are the key resources utilised?
The different sources of gypsum and vendors are identified by our central procurement team. After getting the test report and sample from the supplier, and its testing in our laboratories then clearance by the QC team about the desired quality of gypsum, the procurement of bulk quantity of gypsum gets initiated. The gypsum is transported by road and rail to the plant. The receipt quality and quantity of gypsum is continuously monitored and if any deviation is found, it is immediately informed to the procurement team as well as the vendor. After this, the gypsum is used to feed into the hopper by Raw material handling equipment (eg. JCB, Payloader etc.) and its usage control through a weight feeder from CCR (central control room) to get the desired SO3 level according to the product requirement during the cement manufacturing process.

Tell us about the key technical feasibility factors that make gypsum viable for mixing with cement.
The size, purity, P2O5, chloride and moisture content of gypsum are the key technical feasibility factors that make gypsum viable for its usages. High moisture content and powdery gypsum are a major concern during cement production whereas the dry and adequate size gypsum is easy to use.
Similarly, low purity gypsum required higher usage to meet the SO3 requirement in cement resulted in increased insoluble residue (IR), which affected the product quality and also the fly ash addition in PPC. To consume such a low purity gypsum requirement of high purity gypsums like imported mineral gypsum to meet the SO3 and IR requirement which is not a cost effective solution.
Phospho gypsum has higher P2O5, which causes delay in the setting of cement and lesser early days compressive strength. Hence, it is mandatory to use it in a very controlled manner by blending it with other available gypsums to meet the product quality requirement.

What is the preparation or processing required to make gypsum ready to mix with the clinker?
Presently, preparation or processing of the different types of gypsum is done by handling equipment manually (eg. loader, dozer and JCB, etc.) as per recommended target and quality. Mixed gypsum is then fed to a separate hopper and controlled by a weight feeder and a controlled quantity of gypsum is mixed with clinker in the cement grinding process.
A more suitable solution to prepare uniform gypsum is to mix it separately before feeding
by blending various types of gypsums through
multi hoppers and controlled dosage to get targeted gypsum quality.

How does automation help in obtaining this mineral and increasing productivity of the unit?
The automation gives a timely update about the whole process to track the status and progress of procured material which saves time and avoids delays in procurement. It also helps to increase efficiency by fast process, productivity, growth and profitability of the organisation.
In all our units, the LIMs System has been implemented. All the quality test equipment is linked with the LIMs software and test results are directly transferred in LIMs and SAP. The quality analysis results of each type of gypsum and vendor wise are available in the automation system which helps to identify the deviation and consistency in quality thereby reducing error and confusion.

What are the sustainability measures taken by your organisation in obtaining and processing the desired quality of gypsum?
As part of our sustainability goals we have taken significant measures to replace natural or mineral gypsum with industrial waste. All our manufacturing units are utilising available industrial waste such as chemical gypsum, anhydrite gypsum, FGD, synthetic gypsum etc.
Blending of mineral gypsum with industrial waste as an economical and sustainable solution to replace natural minerals. Promoting a circular economy is our key pillar of the sustainability journey to reduce the environmental impact of our product by replacing natural resource consumption with industrial wastes which in turn has reduced our dependency on natural resources and is economical as well. It benefits our business, society and the environment by eliminating waste and decoupling our growth from the consumption of natural resources.

What are the major challenges faced in handling and obtaining gypsum for the manufacturing process?
The major challenges in handling and obtaining gypsum are moisture, SO3 and purity, which are the key parameters in deciding the quality of gypsum. Some minor elements also affect the quality of gypsum like phosphorus pentoxide and chloride percentage.
The deviation in SO3 content increases or decreases the quantity of gypsum in cement. Also, typically, a decrease in the SO3 content increases the insoluble residues, especially in Indian mineral gypsum, which causes higher IR in cement and lowers the performance/durability of cement.
In chemical gypsum, the main concern is the moisture of material and colour, which directly affects the operation with reference to jamming, choking and product quality.

-Kanika Mathur

Concrete

Nuvoco Vistas Reports Record Q2 EBITDA, Expands Capacity to 35 MTPA

Cement Major Nuvoco Posts Rs 3.71 bn EBITDA in Q2 FY26

Published

on

By

Shares



Nuvoco Vistas Corp. Ltd., one of India’s leading building materials companies, has reported its highest-ever second-quarter consolidated EBITDA of Rs 3.71 billion for Q2 FY26, reflecting an 8% year-on-year revenue growth to Rs 24.58 billion. Cement sales volume stood at 4.3 MMT during the quarter, driven by robust demand and a rising share of premium products, which reached an all-time high of 44%.

The company continued its deleveraging journey, reducing like-to-like net debt by Rs 10.09 billion year-on-year to Rs 34.92 billion. Commenting on the performance, Jayakumar Krishnaswamy, Managing Director, said, “Despite macro headwinds, disciplined execution and focus on premiumisation helped us achieve record performance. We remain confident in our structural growth trajectory.”

Nuvoco’s capacity expansion plans remain on track, with refurbishment of the Vadraj Cement facility progressing towards operationalisation by Q3 FY27. In addition, the company’s 4 MTPA phased expansion in eastern India, expected between December 2025 and March 2027, will raise its total cement capacity to 35 MTPA by FY27.

Reinforcing its sustainability credentials, Nuvoco continues to lead the sector with one of the lowest carbon emission intensities at 453.8 kg CO? per tonne of cementitious material.

Continue Reading

Concrete

Jindal Stainless to Invest $150 Mn in Odisha Metal Recovery Plant

New Jajpur facility to double metal recovery capacity and cut emissions

Published

on

By

Shares



Jindal Stainless Limited has announced an investment of $150 million to build and operate a new wet milling plant in Jajpur, Odisha, aimed at doubling its capacity to recover metal from industrial waste. The project is being developed in partnership with Harsco Environmental under a 15-year agreement.

The facility will enable the recovery of valuable metals from slag and other waste materials, significantly improving resource efficiency and reducing environmental impact. The initiative aligns with Jindal Stainless’s sustainability roadmap, which focuses on circular economy practices and low-carbon operations.

In financial year 2025, the company reduced its carbon footprint by about 14 per cent through key decarbonisation initiatives, including commissioning India’s first green hydrogen plant for stainless steel production and setting up the country’s largest captive solar energy plant within a single industrial campus in Odisha.

Shares of Jindal Stainless rose 1.8 per cent to Rs 789.4 per share following the announcement, extending a 5 per cent gain over the past month.

Continue Reading

Concrete

Vedanta gets CCI Approval for Rs 17,000 MnJaiprakash buyout

Acquisition marks Vedanta’s expansion into cement, real estate, and infra

Published

on

By

Shares



Vedanta Limited has received approval from the Competition Commission of India (CCI) to acquire Jaiprakash Associates Limited (JAL) for approximately Rs 17,000 million under the Insolvency and Bankruptcy Code (IBC) process. The move marks Vedanta’s strategic expansion beyond its core mining and metals portfolio into cement, real estate, and infrastructure sectors.

Once the flagship of the Jaypee Group, JAL has faced severe financial distress with creditors’ claims exceeding Rs 59,000 million. Vedanta emerged as the preferred bidder in a competitive auction, outbidding the Adani Group with an overall offer of Rs 17,000 million, equivalent to Rs 12,505 million in net present value terms. The payment structure involves an upfront settlement of around Rs 3,800 million, followed by annual instalments of Rs 2,500–3,000 million over five years.

The National Asset Reconstruction Company Limited (NARCL), which acquired the group’s stressed loans from a State Bank of India-led consortium, now leads the creditor committee. Lenders are expected to take a haircut of around 71 per cent based on Vedanta’s offer. Despite approvals for other bidders, Vedanta’s proposal stood out as the most viable resolution plan, paving the way for the company’s diversification into new business verticals.

Continue Reading

Trending News