Connect with us

Concrete

Promoting a circular economy is the key

Published

on

Shares

Prakhar Shrivastava, Corporate Quality, JK Cement, sheds light on the use of automation and sustainability in processing gypsum.

Explain the role of gypsum in the cement manufacturing process?
Gypsum plays a crucial role in manufacturing cement. It is used to delay cement setting by slowing down the reaction of mixing cement with water to prevent rapid hardening of cement and increase its workability for construction. Gypsum enhances cement strength at all ages. If we grind the clinker without gypsum, then the cement will set immediately after mixing with water and the strength development will be lesser.

What are the proportions of gypsum that are added in various types of cements produced? Tell us in details of the composition and percentage.
Presently different types of gypsum are available and are being added to meet the SO3 in cement, like mineral gypsum, chemical, phospho, marine gypsum, anhydrite, FGD and synthetic gypsum. The composition and percentage depend on the chemistry of clinker and gypsum to adhere to the desired SO3 target in cement. Normally the percentage addition of gypsum is 5 to 8 in cement mix as per gypsum quality and its availability. Few gypsums, which have higher purity above 85 per cent like imported mineral, anhydrite and phospho gypsum usage are less, whereas, Indian mineral gypsum having purity <40 per cent required higher percentage usage to meet the SO3 requirement.

Tell us about the process of obtaining gypsum by your organisation. What are the key resources utilised?
The different sources of gypsum and vendors are identified by our central procurement team. After getting the test report and sample from the supplier, and its testing in our laboratories then clearance by the QC team about the desired quality of gypsum, the procurement of bulk quantity of gypsum gets initiated. The gypsum is transported by road and rail to the plant. The receipt quality and quantity of gypsum is continuously monitored and if any deviation is found, it is immediately informed to the procurement team as well as the vendor. After this, the gypsum is used to feed into the hopper by Raw material handling equipment (eg. JCB, Payloader etc.) and its usage control through a weight feeder from CCR (central control room) to get the desired SO3 level according to the product requirement during the cement manufacturing process.

Tell us about the key technical feasibility factors that make gypsum viable for mixing with cement.
The size, purity, P2O5, chloride and moisture content of gypsum are the key technical feasibility factors that make gypsum viable for its usages. High moisture content and powdery gypsum are a major concern during cement production whereas the dry and adequate size gypsum is easy to use.
Similarly, low purity gypsum required higher usage to meet the SO3 requirement in cement resulted in increased insoluble residue (IR), which affected the product quality and also the fly ash addition in PPC. To consume such a low purity gypsum requirement of high purity gypsums like imported mineral gypsum to meet the SO3 and IR requirement which is not a cost effective solution.
Phospho gypsum has higher P2O5, which causes delay in the setting of cement and lesser early days compressive strength. Hence, it is mandatory to use it in a very controlled manner by blending it with other available gypsums to meet the product quality requirement.

What is the preparation or processing required to make gypsum ready to mix with the clinker?
Presently, preparation or processing of the different types of gypsum is done by handling equipment manually (eg. loader, dozer and JCB, etc.) as per recommended target and quality. Mixed gypsum is then fed to a separate hopper and controlled by a weight feeder and a controlled quantity of gypsum is mixed with clinker in the cement grinding process.
A more suitable solution to prepare uniform gypsum is to mix it separately before feeding
by blending various types of gypsums through
multi hoppers and controlled dosage to get targeted gypsum quality.

How does automation help in obtaining this mineral and increasing productivity of the unit?
The automation gives a timely update about the whole process to track the status and progress of procured material which saves time and avoids delays in procurement. It also helps to increase efficiency by fast process, productivity, growth and profitability of the organisation.
In all our units, the LIMs System has been implemented. All the quality test equipment is linked with the LIMs software and test results are directly transferred in LIMs and SAP. The quality analysis results of each type of gypsum and vendor wise are available in the automation system which helps to identify the deviation and consistency in quality thereby reducing error and confusion.

What are the sustainability measures taken by your organisation in obtaining and processing the desired quality of gypsum?
As part of our sustainability goals we have taken significant measures to replace natural or mineral gypsum with industrial waste. All our manufacturing units are utilising available industrial waste such as chemical gypsum, anhydrite gypsum, FGD, synthetic gypsum etc.
Blending of mineral gypsum with industrial waste as an economical and sustainable solution to replace natural minerals. Promoting a circular economy is our key pillar of the sustainability journey to reduce the environmental impact of our product by replacing natural resource consumption with industrial wastes which in turn has reduced our dependency on natural resources and is economical as well. It benefits our business, society and the environment by eliminating waste and decoupling our growth from the consumption of natural resources.

What are the major challenges faced in handling and obtaining gypsum for the manufacturing process?
The major challenges in handling and obtaining gypsum are moisture, SO3 and purity, which are the key parameters in deciding the quality of gypsum. Some minor elements also affect the quality of gypsum like phosphorus pentoxide and chloride percentage.
The deviation in SO3 content increases or decreases the quantity of gypsum in cement. Also, typically, a decrease in the SO3 content increases the insoluble residues, especially in Indian mineral gypsum, which causes higher IR in cement and lowers the performance/durability of cement.
In chemical gypsum, the main concern is the moisture of material and colour, which directly affects the operation with reference to jamming, choking and product quality.

-Kanika Mathur

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares



The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares



JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares



Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News