Connect with us

Concrete

Promoting a circular economy is the key

Published

on

Shares

Prakhar Shrivastava, Corporate Quality, JK Cement, sheds light on the use of automation and sustainability in processing gypsum.

Explain the role of gypsum in the cement manufacturing process?
Gypsum plays a crucial role in manufacturing cement. It is used to delay cement setting by slowing down the reaction of mixing cement with water to prevent rapid hardening of cement and increase its workability for construction. Gypsum enhances cement strength at all ages. If we grind the clinker without gypsum, then the cement will set immediately after mixing with water and the strength development will be lesser.

What are the proportions of gypsum that are added in various types of cements produced? Tell us in details of the composition and percentage.
Presently different types of gypsum are available and are being added to meet the SO3 in cement, like mineral gypsum, chemical, phospho, marine gypsum, anhydrite, FGD and synthetic gypsum. The composition and percentage depend on the chemistry of clinker and gypsum to adhere to the desired SO3 target in cement. Normally the percentage addition of gypsum is 5 to 8 in cement mix as per gypsum quality and its availability. Few gypsums, which have higher purity above 85 per cent like imported mineral, anhydrite and phospho gypsum usage are less, whereas, Indian mineral gypsum having purity <40 per cent required higher percentage usage to meet the SO3 requirement.

Tell us about the process of obtaining gypsum by your organisation. What are the key resources utilised?
The different sources of gypsum and vendors are identified by our central procurement team. After getting the test report and sample from the supplier, and its testing in our laboratories then clearance by the QC team about the desired quality of gypsum, the procurement of bulk quantity of gypsum gets initiated. The gypsum is transported by road and rail to the plant. The receipt quality and quantity of gypsum is continuously monitored and if any deviation is found, it is immediately informed to the procurement team as well as the vendor. After this, the gypsum is used to feed into the hopper by Raw material handling equipment (eg. JCB, Payloader etc.) and its usage control through a weight feeder from CCR (central control room) to get the desired SO3 level according to the product requirement during the cement manufacturing process.

Tell us about the key technical feasibility factors that make gypsum viable for mixing with cement.
The size, purity, P2O5, chloride and moisture content of gypsum are the key technical feasibility factors that make gypsum viable for its usages. High moisture content and powdery gypsum are a major concern during cement production whereas the dry and adequate size gypsum is easy to use.
Similarly, low purity gypsum required higher usage to meet the SO3 requirement in cement resulted in increased insoluble residue (IR), which affected the product quality and also the fly ash addition in PPC. To consume such a low purity gypsum requirement of high purity gypsums like imported mineral gypsum to meet the SO3 and IR requirement which is not a cost effective solution.
Phospho gypsum has higher P2O5, which causes delay in the setting of cement and lesser early days compressive strength. Hence, it is mandatory to use it in a very controlled manner by blending it with other available gypsums to meet the product quality requirement.

What is the preparation or processing required to make gypsum ready to mix with the clinker?
Presently, preparation or processing of the different types of gypsum is done by handling equipment manually (eg. loader, dozer and JCB, etc.) as per recommended target and quality. Mixed gypsum is then fed to a separate hopper and controlled by a weight feeder and a controlled quantity of gypsum is mixed with clinker in the cement grinding process.
A more suitable solution to prepare uniform gypsum is to mix it separately before feeding
by blending various types of gypsums through
multi hoppers and controlled dosage to get targeted gypsum quality.

How does automation help in obtaining this mineral and increasing productivity of the unit?
The automation gives a timely update about the whole process to track the status and progress of procured material which saves time and avoids delays in procurement. It also helps to increase efficiency by fast process, productivity, growth and profitability of the organisation.
In all our units, the LIMs System has been implemented. All the quality test equipment is linked with the LIMs software and test results are directly transferred in LIMs and SAP. The quality analysis results of each type of gypsum and vendor wise are available in the automation system which helps to identify the deviation and consistency in quality thereby reducing error and confusion.

What are the sustainability measures taken by your organisation in obtaining and processing the desired quality of gypsum?
As part of our sustainability goals we have taken significant measures to replace natural or mineral gypsum with industrial waste. All our manufacturing units are utilising available industrial waste such as chemical gypsum, anhydrite gypsum, FGD, synthetic gypsum etc.
Blending of mineral gypsum with industrial waste as an economical and sustainable solution to replace natural minerals. Promoting a circular economy is our key pillar of the sustainability journey to reduce the environmental impact of our product by replacing natural resource consumption with industrial wastes which in turn has reduced our dependency on natural resources and is economical as well. It benefits our business, society and the environment by eliminating waste and decoupling our growth from the consumption of natural resources.

What are the major challenges faced in handling and obtaining gypsum for the manufacturing process?
The major challenges in handling and obtaining gypsum are moisture, SO3 and purity, which are the key parameters in deciding the quality of gypsum. Some minor elements also affect the quality of gypsum like phosphorus pentoxide and chloride percentage.
The deviation in SO3 content increases or decreases the quantity of gypsum in cement. Also, typically, a decrease in the SO3 content increases the insoluble residues, especially in Indian mineral gypsum, which causes higher IR in cement and lowers the performance/durability of cement.
In chemical gypsum, the main concern is the moisture of material and colour, which directly affects the operation with reference to jamming, choking and product quality.

-Kanika Mathur

Concrete

NBCC Wins Rs 550m IOB Office Project In Raipur

PMC Contract Covers Design, Execution And Handover

Published

on

By

Shares



State-owned construction major NBCC India Ltd has secured a new domestic work order worth around Rs 550.2 million from Indian Overseas Bank (IOB) in the normal course of business, according to a regulatory filing.

The project involves planning, designing, execution and handover of IOB’s new Regional Office building at Raipur. The contract has been awarded under NBCC’s project management consultancy (PMC) operations and excludes GST.

NBCC said the order further strengthens its construction and infrastructure portfolio. The company clarified that the contract is not a related party transaction and that neither its promoter nor promoter group has any interest in the awarding entity.

The development has been duly disclosed to the stock exchanges as part of NBCC’s standard compliance requirements.

Continue Reading

Concrete

Nuvoco Q3 EBITDA Jumps As Cement Sales Hit Record

Premium products and cost control lift profitability

Published

on

By

Shares



Nuvoco Vistas Corp. Ltd reported a strong financial performance for the quarter ended 31 December 2025 (Q3 FY26), driven by record cement sales, higher premium product volumes and improved operational efficiencies.

The company achieved its highest-ever third-quarter consolidated cement sales volume of 5 million tonnes, registering growth of 7 per cent year-on-year. Consolidated revenue from operations rose 12 per cent to Rs 27.01 billion during the quarter. EBITDA increased sharply by 50 per cent YoY to Rs 3.86 billion, supported by improved pricing and cost management.

Premium products continued to be a key growth driver, sustaining a historic high contribution of 44 per cent for the second consecutive quarter. The strong momentum reflects rising brand traction for the Nuvoco Concreto and Nuvoco Duraguard ranges, which are increasingly recognised as trusted choices in building materials.

In the ready-mix concrete segment, Nuvoco witnessed healthy demand traction across its Concreto product portfolio. The company launched Concreto Tri Shield, a specialised offering delivering three-layer durability and a 50 per cent increase in structural lifespan. In the modern building materials category, the firm introduced Nuvoco Zero M Unnati App, a digital loyalty platform aimed at improving influencer engagement, transparency and channel growth.

Despite heavy rainfall affecting parts of the quarter, the company maintained improved performance supported by strong premiumisation and operational discipline. Capacity expansion projects in the East, along with ongoing execution at the Vadraj Cement facilities, remain on track. The operationalisation of the clinker unit and grinding capacity, planned in phases starting Q3 FY27, is expected to lift total cement capacity to around 35 million tonnes per annum, reinforcing Nuvoco’s position as India’s fifth-largest cement group.

Commenting on the results, Managing Director Mr Jayakumar Krishnaswamy said Q3 marked strong recovery and momentum despite economic challenges. He highlighted double-digit volume growth, premium-led expansion and a 50 per cent rise in EBITDA. The company also recorded its lowest blended fuel cost in 17 quarters at Rs 1.41 per Mcal. Refurbishment and project execution at the Vadraj Cement Plant are progressing steadily, which, along with strategic capacity additions and cost efficiencies, is expected to strengthen Nuvoco’s long-term competitive advantage.

Continue Reading

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares



Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds