Connect with us

Concrete

Waste Heat Utilisation is now a proven technology

Published

on

Shares

Sanjay Kumar Khandelwal, Head – Power Plants, JK Cement, shares details about the working of waste heat recovery systems (WHRS) and its benefits, while elaborating on the efforts undertaken by his company to become energy-efficient.

What are the alternative or renewable sources of energy used by your organisation for the process of cement manufacturing?
At JK Cement, we are at the forefront of our sustainability journey. To achieve our clean energy targets, the alternative renewable energy sources used by our organisation are solar plants, wind energy, hydel energy, biomass and waste heat recovery systems (WHRS). The use of alternative fuels and raw material (AFR) to substitute fossil fuels has also been initiated.
We have installed WHRS with all the kilns except one kiln which we are planning to install in FY 22-23. In FY21 our Green Power Mix was 25 per cent and we are working to increase it to 75 per cent by FY 2030.
We started our AFR journey in FY 2013-14 with a very small quantity and now we have achieved a TSR of 6.5 per cent in FY 2020-21. We are proud to share that we have achieved a TSR of 20 per cent at one of our plants. To achieve the TSR target of 35 per cent we have made huge investments for installation of shredder, covered storage shed and feeding arrangement for both solid and liquid waste, refuse derived fuel (RDF), plastic waste etc. Further, to overcome the operational challenges we are installing chlorine bypass, an outside burning system and more shredders are also in the pipeline. For the supply side, we have recently signed a MoU with PRESPL for the supply of biofuel and biomass to achieve the proposed TSR target of 35 per cent

When did your organisation install the WHRS in cement plants and what were the key considerations taken into account while doing the same?
The first WHRS with a capacity of 13.2 MW was commissioned in 2008 at JK Cement Works, Nimbahera. Recently in our plant at Mangrol, we upgraded the capacity to 29.1 MW from 10 MW after the installation of Kiln-3. Our objective was to generate power without any additional fuels, maximise utilisation of waste heat generated from kiln operations, minimise heat losses into the environment and finally minimise water consumption.

What was the energy consumption of the plant prior to the system and how has that changed post installation?
Installation of WHRS plays a major role in not only reducing the overall energy consumption cost but also the requirement of other available non-renewable energy resources. This has resulted in minimising the Grid and CPP as a result of implementing WHRS to meet our energy requirements. Apart from that, regular monitoring of WHRS parameters and process optimisation is being done on a regular basis to recuperate maximum heat from the system so as to generate maximum power and to keep the WHRS system efficient.

How does the process of waste heat recovery work? What is the technology used by your organisation for its functionality and monitoring?
WHRS works on the thermal Rankine Cycle concept. Steam (hot gases) emitted from the preheater exit as well as clinker cooler from the Kiln operations, enters into the WHRS system. The steam then passes through the turbine to further the power generation process.
In order to ensure that our power generation is as efficient as possible, we have adopted the best operating and maintenance practices. This includes operating from a central control room using a state-of-the-art PLC-based operating system while keeping manual intervention to a minimum. We also compare the actual results with the design and the best data on a daily basis, making any adjustments necessary in real-time besides conducting regular system audits to ensure the efficiency of our WHRS.

On an average, energy cost is around 40 per cent of the production cost for cement manufacturing. What is the impact of the waste heat recovery system on the energy cost of the cement plant?
WHRS utilises hot gases emitted both from preheater as well as clinker cooler to generate power without the usage of any additional fuel. In other words, we are able to generate power without utilising any fossil fuels; which not only reduces overall carbon footprints but also restricts hot gases from entering into the atmosphere. This system results in reducing the overall cost of production by reducing overall power consumption cost followed by a reduction in cost through optimum power mix (maximum usage of WHRS and renewable power sources and least usage of grid and CPP power) through effective power management.

The WHRS is a major contributor towards reducing the carbon footprint. Tell us about its impact and support in achieving the decarbonising goals of the cement industry.
WHRS utilises hot gases emitted both from preheater as well as clinker cooler to generate power without the usage of any additional fuel. In other words, we are able to generate power without utilising any fossil fuels; which not only reduces the overall carbon footprint but also restricts hot gases from entering into the atmosphere.
This system results in reducing the overall cost of production by reducing our power consumption cost followed by a reduction in cost through optimum power mix and through effective power management.

What other technological or automation advancements can contribute towards making the process of cement manufacturing energy optimised?
To name a few: VFD installation, PID-based automation, low DP control valve installation, high energy efficient fans, high efficient motors, PF improvement system, cross country belt conveyors for material conveying, installation of horizontal roller press (HRP) mills with lower specific energy consumption, high efficiency cooler, lower pressure drop preheater, high efficiency latest motors, mechanical conveying in place of pneumatic conveying, replacement of reciprocating compressors with screw compressors, automation of compressed air pressure as per requirement with installation of controller, adopting drip irrigations to conserve water, regular audits etc, can all go a long way in improving and optimising cement manufacturing process.     

Are there any specific researches taken in the direction of finding more alternative sources of energy that have a lower impact on the environment?
At a global level, to extract heat at a low temperature range, Organic Rankine Cycle based power generation, Vapour Absorption Machine, water heating and the use of CPP are some of the latest developments, which contribute a lot in reducing the carbon footprint. However, this requires very high capital investments.
The use of green hydrogen as an alternative fuel, electrification of clinkering process, use of concentrated solar energy for producing clinker are the fields that can be explored that has the potential to lower environmental impact

How do you foresee the future of energy consumption in the cement manufacturing process and its impact on the end product cost?
World energy demand is expected to increase by 35 per cent by 2030 as developing nations have to modernise and expand their economic output. This creates a near impossible scenario for secure, low carbon energy supplies to keep pace with this demand. So, the need of the hour is to be 3 times more energy efficient!
In today’s scenario, the cement industry is becoming more and more energy efficient not only through its process optimisation but also by adopting newer technologies. Waste Heat Utilisation is now a proven technology and has become an integral part of the cement manufacturing process. AFR is another viable option that has the potential to reduce the consumption of fossil fuels. This can not only help in reducing carbon footprint but also improve cost economics besides reducing environmental impact. Other industry wastes like slag, red-mud, zinc waste etc. and hazardous wastes along with biomass are also being used.
Chemical gypsum and similar alternative raw materials are also being used in the cement process. This has not only made the manufacturing process energy efficient but has also optimised the end product cost. However, other factors like increasing fuel and raw materials cost, manpower, overheads, logistics and mining cost etc. are major concerns that can increase the end-product cost, therefore, nullifying the effect of optimisation and energy efficiency.
With a strong focus on AFR usage, the challenge that we face is in terms of its availability, utilisation, economic and technical feasibility. This also requires creating an ecosystem that supports its adoption. Therefore, regulatory authorities need to come forward and help take this to the level that has been achieved by developed countries.

-Kanika Mathur

Concrete

Steel: Shielded or Strengthened?

CW explores the impact of pro-steel policies on construction and infrastructure and identifies gaps that need to be addressed.

Published

on

By

Shares



Going forward, domestic steel mills are targeting capacity expansion
of nearly 40 per cent through till FY31, adding 80-85 mt, translating
into an investment pipeline of $ 45-50 billion. So, Jhunjhunwala points
out that continuing the safeguard duty will be vital to prevent a surge
in imports and protect domestic prices from external shocks. While in
FY26, the industry operating profit per tonne is expected to hold at
around $ 108, similar to last year, the industry’s earnings must
meaningfully improve from hereon to sustain large-scale investments.
Else, domestic mills could experience a significant spike in industry
leverage levels over the medium term, increasing their vulnerability to
external macroeconomic shocks.(~$ 60/tonne) over the past one month,
compressing the import parity discount to ~$ 23-25/tonne from previous
highs of ~$ 70-90/tonne, adds Jhunjhunwala. With this, he says, “the
industry can expect high resistance to further steel price increases.”

Domestic HRC prices have increased by ~Rs 5,000/tonne
“Aggressive
capacity additions (~15 mt commissioned in FY25, with 5 mt more by
FY26) have created a supply overhang, temporarily outpacing demand
growth of ~11-12 mt,” he says…

To read the full article Click Here

Continue Reading

Concrete

JK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA

Company becomes India’s fifth-largest grey cement producer

Published

on

By

Shares



JK Cement  has commissioned its new 3 MTPA grey cement plant in Buxar, Bihar, taking the company’s total installed capacity to 31.26 million tonnes per annum (MTPA) and moving it past the 30 MTPA milestone. With this addition, JK Cement now ranks among the top five grey cement manufacturers in India, strengthening its national presence.

Commenting on the development, Dr Raghavpat Singhania, Managing Director, JK Cement, said, “Crossing 31 MTPA is a significant turning point in JK Cement’s expansion and demonstrates the scale, resilience, and aspirations of our company. In addition to making a significant contribution to Bihar’s development vision, the commissioning of our Buxar plant represents a strategic step towards expanding our national footprint. We are committed to developing top-notch manufacturing capabilities that boost India’s infrastructure development and generate long-term benefits for local communities.”

Spread across 100 acres, the Buxar plant is located on the Patna–Buxar highway, enabling efficient distribution across Bihar and neighbouring regions. While JK Cement entered the Bihar market last year through supplies from its Prayagraj plant, the new facility will allow local manufacturing and deliveries within 24 hours across the state.

Mr Madhavkrishna Singhania, Joint Managing Director & CEO, JK Cement, said, “JK Cement is now among India’s top five producers of grey cement after the Buxar plant commissioning. Our capacity to serve Bihar locally, more effectively, and on a larger scale is strengthened by this facility. Although we had already entered the Bihar market last year using Prayagraj supplies, local manufacturing now enables us to be nearer to our clients and significantly raise service standards throughout the state. Buxar places us at the center of this chance to promote sustainable growth for both the company and the region in Bihar, a high-growth market with strong infrastructure momentum.”

The project has involved an investment of Rs 5 billion. Commercial production began on 29 January 2026, following construction commencement in March 2025. The company said the plant is expected to generate significant direct and indirect employment and support ancillary industrial development in the region.

Continue Reading

Concrete

JK Cement Crosses 31 MTPA Capacity with Commissioning of Buxar Plant in Bihar

Published

on

By

Shares



JK Cement has commissioned a 3 MTPA Grey Cement plant in Buxar, Bihar, taking its total capacity to 31.26 MTPA and placing it among India’s top five grey cement producers. The ₹500 crore investment strengthens the company’s national footprint while supporting Bihar’s infrastructure growth and local economic development.

JK Cement Ltd., one of India’s leading cement manufacturers, has announced the commissioning of its new state-of-the-art Grey Cement plant in Buxar, Bihar, marking a significant milestone in the company’s growth trajectory. With the commissioning of this facility, JK Cement’s total production capacity has increased to 31.26 million tonnes per annum (MTPA), enabling the company to cross the 30 MTPA threshold.

This expansion positions JK Cement among the top five Grey Cement manufacturers in India, strengthening its national footprint and reinforcing its long-term growth strategy.

Commenting on the strategic achievement, Dr Raghavpat Singhania, Managing Director, JK Cement, said, “Crossing 31 MTPA is a significant turning point in JK Cement’s expansion and demonstrates the scale, resilience, and aspirations of our company. In addition to making a significant contribution to Bihar’s development vision, the commissioning of our Buxar plant represents a strategic step towards expanding our national footprint. We are committed to developing top-notch manufacturing capabilities that boost India’s infrastructure development and generate long-term benefits for local communities.”

The Buxar plant has a capacity of 3 MTPA and is spread across 100 acres. Strategically located on the Patna–Buxar highway, the facility enables faster and more efficient distribution across Bihar and adjoining regions. While JK Cement entered the Bihar market last year through supplies from its Prayagraj plant, the Buxar facility will now allow the company to serve the state locally, with deliveries possible within 24 hours across Bihar.

Sharing his views on the expansion, Madhavkrishna Singhania, Joint Managing Director & CEO, JK Cement, said, “JK Cement is now among India’s top five producers of grey cement after the Buxar plant commissioning. Our capacity to serve Bihar locally, more effectively, and on a larger scale is strengthened by this facility. Although we had already entered the Bihar market last year using Prayagraj supplies, local manufacturing now enables us to be nearer to our clients and significantly raise service standards throughout the state. Buxar places us at the center of this chance to promote sustainable growth for both the company and the region in Bihar, a high-growth market with strong infrastructure momentum.”

The new facility represents a strategic step in supporting Bihar’s development vision by ensuring faster access to superior quality cement for infrastructure, housing, and commercial projects. JK Cement has invested approximately ₹500 crore in the project. Construction began in March 2025, and commercial production commenced on January 29, 2026.

In addition to strengthening JK Cement’s regional presence, the Buxar plant is expected to generate significant direct and indirect employment opportunities and attract ancillary industries, thereby contributing to the local economy and the broader industrial ecosystem.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds