Environment
We challenge conventional packaging for a sustainable future.
Published
4 years agoon
By
admin
Johan Nellbeck, Senior Vice President Packaging Paper, BillerudKorsn?s AB
Worldwide trend is to use paper bags for packing cement. However in India it is the other way. BillerudKorsn?s AB one of the largest suppliers of sack paper has entered India and trying it?s hand on cement sector. ICR is in conversation with Johan Nellbeck, ?enior Vice President Packaging Paper, BillerudKorsn?s AB
Introduce your company and speak about its Indian operations for our readers. Give us an idea of your product portfolio…..
BillerudKorsn?s is one of the world?s leading suppliers of high-quality packaging materials that are made from the high strength, long fibres of Scandinavian trees. Our raw material – wood, comes from sustainably managed forests and our manufacturing processes are resource-efficient.
The manufacture of pulp, paper and board takes place at BillerudKorsn?s? eight production units in Sweden, Finland and the UK. Our five units in Sweden are integrated mills and all the eight units in ?weden, Finland and UK hold quality and environmental certification.
We have been servicing the Indian market for some time now; we realise the potential of the Indian market and offer the best product with high level of service to this market. We now have a representative office in India, so that we are with the customers whenever they need us.
Give us a brief on your product ?Sack Paper? for the cement industry. In what colors is it available?
Our sack papers are produced from high quality northern pine trees, the fibre from these trees gives our paper a superior quality and high strength. The production process adds to the porosity of the paper and as a result what we have is a high strength with high porosity paper, most suitable for powdered products and especially cement. The filling is efficient, clean and dust free.
Our sack paper is available in white (bleached) and brown. The paper can have full body printing and so it can serve the Indian market well. In India cement sacks are generally coloured, bright colours like yellow/green and so on. Good branding on white paper sacks will make the brand stand out.
HDPE or LDPE are all plastics, these sacks have micro pores, which leads to cement loss and pilferage. Also these plastics sacks are neither biodegradable nor environmentally friendly.
Which are the most important properties of a paper sack? How do these compare with sacks made with other materials (Laminated bags or HDPF, LDPE bags)?
The most important property of paper for cement sacks is high strength with high porosity. Due to porosity, while filling deaeration happens on its own and therefore no perforations are required. Since the sacks have no perforations the strength of the kraft paper remains intact.
Woven and laminated sacks have an open structure or are perforated, allowing large amounts of cement to escape; we?ve measured up to 300 gm per sack. This cement wastage costs money, damages the environment and the health of workers and customers. If one calculates this loss for the whole Indian cement industry, using cement production of 280 million tonnes, 80 per cent sack use and $100 per tonne, one arrives at the astounding loss of 1.5 million tonnes of cement, $150 million in turnover and additional carbon footprint of one million tonnes of CO2.
When compared to LDPE/HDPE, in paper bags, there is no wastage while filling, no pilferage during logistics, clean working and handling for the workers. Besides this it brings value to the brand – the brand is visible on the sacks, its clean, dust free and environment friendly. Paper degrades in soil in less than three months As a caution we suggest that hooks should be avoided for loading and unloading.
Does the user of these sacks require controlled humidity and temperature for storage of paper? Does it have limited shelf life?
Both the paper and the paper sacks, well packaged, can be stored in normal warehouses without the need for a controlled atmosphere. The shelf life of cement in paper sacks is adequate for the value chain; however, we recommend proper stock management to ensure sack performance and to minimise storage costs and working capital.
What are your strategies for popularising paper sacks in India since it is a very minor share of the market at present?
Paper sacks made of strong, high-porous paper like QuickFill, are the preferred, cost-efficient choice of cement companies in many Asian countries such as Indonesia, Thailand, Malaysia and the Philippines. We believe that producers of cement in India are very interested in switching to clean and strong paper sacks but are held back by their cost focus paradigm. They know that paper sacks create value by solving the problems of plastic pollution, cement waste, health hazards and poor branding due to the dusting of WPP sacks. Our strategy is to shift this paradigm to a "value" focus approach by creating awareness of the lost value.
We support these efforts by sharing success from other markets, offering pilot projects with full project management and, most importantly, supporting the projects with continuous and competent technical support. The activities mostly start with one-on-one consultations with cement producers and we guarantee confidentiality should a company require this. In India, we are working closely with a few cement brand owners, and Ms Madhvi, India representative for sack solution, is taking the projects forward.
Branding is also a very important part of this initiative so we have branded the product Quickfill Clean – "Quickfill" due to the high performance of the packaging and "Clean" due to the dustless nature of the sack. The "Clean" clearly communicates the elimination of cement losses and damage to nature and health.
Share with our readers a few success stories on packing of cement for brand enhancement and as a solution provider for reducing dust emission.
QuickFill sacks with a strong white QuickFill as outer ply is used by producers wishing to enhance their branding and at the same time offer their customers clean, dust free product with an appealing presentation. Cement companies in Russia, South Africa and China are among those having made this choice. We share our success stories on our website but only if given permission by the brand owner. Readers should visit our website: http://www.billerudkorsnas.com/Our-Offer/?olution-Services/?ack-?olutions/ Our most recent success story is one in South Africa where Sephaku switched their outer ply to white paper in order to differentiate themselves from their competitors. The new construction which also contained an extra high porous paper in the inner ply to solve filling problems related to high ash content, has resulted in increased brand recognition, assisting the company in achieving their sales and marketing goals.
Recently in Vietnam, a company ordered the first commercial volumes of QuickFill Clean sacks to replace WPP-based sacks. The company is fully satisfied with the performance of the Quickfill Clean sacks and is switching to paper for branding and differentiation purposes. They also like the much improved product presentation and better friction properties which provide stable and safer stacking of cement sacks. In India we currently have three projects running which are progressing very well.
On the commercial side, how do the costs of a paper and plastic sack compare?
When comparing the unit cost of a QuickFill Clean paper sack and a WPP plastic sack, the paper sack is usually higher in price. But then, so is its value! When making a total cost analysis, including the high loss of cement, higher maintenance costs, costs of pilferage, revenue loss and reduced goodwill due to poor image and pollution, then the paper sack is clearly the logical and economical choice.
Two aspects which are difficult to quantify are damage to the health of people exposed to the cement dust and the damage to the environment. Given the state of our planet and the clear and present danger of global warming, cement producers have a moral responsibility to take this into account and must make every effort to eliminate this unnecessary extravagance.
Give us some information on WWF Environmental Paper Company Index 2015 (EPCI). What has been your performance on the Paper Company Index? What is your road ahead?
I was very pleased that we were recognized by WWF this autumn for leadership in transparency, which is in how we disclose our ecological footprint in the WWF Environmental Paper Company Index 2015 (EPCI). Transparency for us is an important tool for promoting sustainability in the value chain. It is also a tool in providing stakeholders information for their evaluation of the company?s performance. We scored 78 per cent for transparency as shown by reporting and environmental management systems. In the product category – Packaging, BillerudKorsn?s achieved 70.6 per cent, which is an improvement compared to the last survey. The company was especially acknowledged for the substantial decrease in greenhouse gas emissions.
What is your take on COP21?
It was very pleasing to see the world?s leaders come to a new, ambitious global climate agreement in Paris. Our contribution to reaching these goals will be participation in the Swedish government?s climate initiative, "Fossil Free Sweden", with the aim of achieving a fossil-free society. We have been pursuing a reduction in fossil fuels for many years now, resulting in a fossil fuel consumption of only 2.6 per cent in 2015. Within the scope of Science Based Targets, we have taken the definitive step of developing new, scientifically based climate goals of our own. Replacing fossil based packaging with renewable fibre-based materials is part of the solution and we will play a part in stepping up the pace of this much-needed transition in the global society.
Tell us about some innovations you have been carrying out in other product categories? Where is the industry heading?
If we can stay in the paper sack industry for a moment, I?m very proud to tell you about our latest development, the disappearing sack or D-Sack?. We developed this innovation together with LafargeHolcim in France. This cement sack performs the same as a normal paper cement sack, but has the amazing ability to disintegrate completely in the cement mixer and to integrate itself with the cement or mortar without any detrimental effect on the properties of the cement or mortar! One simply puts the whole cement sack into the mixer and it is gone – we like to think of it as the perfect packaging – packaging which disappears on use!
BillerudKorsn?s? mission is to challenge conventional packaging for a sustainable future in all our product categories. Renewable, recyclable and compostable wood fibre-based packaging can successfully substitute a lot of fossil-based plastic packaging. We have for example developed FibreForm, a paper which is possible to shape and form to replace for example plastic clam-shells, trays and other 3-dimensional packaging. Another initiative BillerudKorsn?s has taken is to develop a paper bottle meeting the demands of carbonated drinks.
People believe that using paper causes deforestation; could you give us some facts on this?
This is a huge misconception. Deforestation is mostly caused by farmers clearing land to produce food for the world?s ever growing population. The legislation governing the management of forests in Sweden is very strict and was promulgated in the early 1800?s when the people understood that resources must be managed on a sustainable basis. One important law requires foresters to replace every felled tree with three to four new ones. As a result, the forests in Sweden are growing, both in the amount of wood and in surface area. It is important to understand that these forests bind carbon as they grow, reducing carbon dioxide and releasing oxygen which we humans breathe. We like to call them the earth?s lungs, which is why we look after them so carefully.
We go to great lengths to ensure that all our papers are made from sustainably managed forests. Another great advantage of paper based packaging is that paper disintegrates in few months, whereas plastic lasts basically forever, polluting the earth, causing catastrophes such as floods and ending up in our oceans, our food chain and eventually our children. Paper is definitely environment friendly.
You may like
-
Who’s gonna bag it
-
India cement industry bosses expect to import more high-sulphur petcoke Sudarshan Varadhan
-
Dalmia Bharat Q4 profit jumps over 2-fold to Rs 264 cr
-
Top level changes at Refratechnik Cement
-
Kerala govt may expedite award of teminal project
-
Jagdish Jaiswal, Owner, Titan Ceramic and Cement Centre (TC&CC)

The Indian cement industry has reached a critical juncture in its sustainability journey. In a landmark move, the Ministry of Environment, Forest and Climate Change has, for the first time, announced greenhouse gas (GHG) emission intensity reduction targets for 282 entities, including 186 cement plants, under the Carbon Credit Trading Scheme, 2023. These targets, to be enforced starting FY2025-26, are aligned with India’s overarching ambition of achieving net zero emissions by 2070.
Cement manufacturing is intrinsically carbon-intensive, contributing to around 7 per cent of global GHG emissions, or approximately 3.8 billion tonnes annually. In India, the sector is responsible for 6 per cent of total emissions, underscoring its critical role in national climate mitigation strategies. This regulatory push, though long overdue, marks a significant shift towards accountability and structured decarbonisation.
However, the path to a greener cement sector is fraught with challenges—economic viability, regulatory ambiguity, and technical limitations continue to hinder the widespread adoption of sustainable alternatives. A major gap lies in the lack of a clear, India-specific definition for ‘green cement’, which is essential to establish standards and drive industry-wide transformation.
Despite these hurdles, the industry holds immense potential to emerge as a climate champion. Studies estimate that through targeted decarbonisation strategies—ranging from clinker substitution and alternative fuels to carbon capture and innovative product development—the sector could reduce emissions by 400 to 500 million metric tonnes by 2030.
Collaborations between key stakeholders and industry-wide awareness initiatives (such as Earth Day) are already fostering momentum. The responsibility now lies with producers, regulators and technology providers to fast-track innovation and investment.
The time to act is now. A sustainable cement industry is not only possible—it is imperative.
Concrete
It is equally important to build resilient building structures
Published
3 weeks agoon
May 13, 2025By
admin
Manoj Rustagi, Chief Sustainability Officer, JSW Cement, discusses how the adoption of ‘green’ practices in cement manufacturing could reshape the future of sustainable construction worldwide.
Cement is one of the most carbon-intensive materials in construction — but innovation is changing that. As sustainability becomes central to infrastructure, green cement is emerging as a viable low-carbon alternative. In this detailed interview with Manoj Rustagi, Chief Sustainability Officer, JSW Cement, we explore what makes cement ‘green’, its performance, and its future. From durability to cutting-edge technologies, here’s a look at the cement industry’s greener path forward.
What exactly is green cement, and how does it differ from traditional cement?
At this point in time, there is no standard for defining green cement. A very simple way to understand ‘Green Cement’ or ‘Low Carbon Cement’ is the one which emits much lower greenhouse gasses (GHG) compared to conventional cement (Ordinary Portland Cement – OPC) during its manufacturing process.
In India, there are many existing BIS Standards for different types of cement products. The most common are OPC; Portland Pozzolana Cement (PPC); Portland Slag Cement (PSC) and Composite Cement (CC). While OPC emits maximum GHG during its manufacturing (approx 800-850 kg CO2/MT of OPC), PSC emits least GHG (approx 300-350 kg CO2/MT of PSC). As PSC is having close to 60 per cent lower CO2 emission compared to OPC, it is the greenest cement available in the Indian market.
There is already work happening at the central government level to define green cement, like it has been recently done for green steel, and hopefully in the next one year or so the standard definition would be available.
What are the key environmental benefits of using green cement?
The primary environmental benefits of green or low-carbon cement are:
- Reduced CO2 emissions
- Lower energy and power consumption
- Conservation of limestone and fossil fuels
- Utilisation of industrial by-products
- (slag/fly ash)
Can green cement match the durability and strength of conventional cement?
PSC is much more durable than any other type of cement product. It has lower heat of hydration; the strength keeps on improving with time; and it has much higher resistance to chloride and sulphate attacks. Most of the concrete failures are because of chloride and sulphate attacks, which corrode the steel reinforcements and that is how cracks get initiated and propagated resulting in eventual concrete failures. For coastal applications, marine structures, seaports, and mass concreting, PSC is most suitable. Due to the intrinsic durability characteristics of PSC; it is a green and resilient cement product.
Usually everyone talks about lower GHG emissions, but it is equally important to build resilient building structures that can withstand natural calamities and have much longer lifespans. PSC is one cement type that is not only lowest in CO2 emissions but at the same time offers durability characteristics and properties (RCPT, RCMT, Mercury Intrusion, long term strength and flexural strength), which are unmatched.
What innovative technologies are being used to produce green cement?
To further reduce the CO2 emissions in the manufacturing process; some of the innovative technologies which are commercially viable are:
- Alternative raw materials: Use of steel slag, red mud and other industrial by-products to substitute limestone
- Alternative fuels: Use of RDF/MSW, pharmaceutical wastes like biomass etc., to substitute coal/pet-coke
- Waste Heat Recovery (WHR): Power plants to generate electricity from waste heat
- Renewable energy: Solar and wind energy instead of state grid
How cost-effective is green cement compared to traditional options?
All of the above innovative technologies do not increase the cost of manufacturing. There are some future technologies like Carbon Capture, Utilisation and/or Storage (CCUS), which are not commercially viable and would increase the cost of cement. As such, the options available today for low-carbon cement (like PSC) are not expensive.
The Government of India has recently notified Indian Carbon Market (ICM), which also includes the cement sector. Hopefully, this would help progressive companies to further reduce their carbon footprint.
What challenges does the industry face in adopting green cement on a large scale?
There is absolutely no incentive/motivation for builders/contractors to use green cement products and therefore there is practically no demand. While the industry has taken many steps. In fact the Indian cement industry is believed to be most energy efficient globally and has approximately 10 per cent lower GHG emissions compared to global average. But due to lack of awareness and lack of performance based standards; the demand for low carbon cement or green cement has not picked up in India.
Are governments and regulators supporting the shift to green cement?
In India, in the last couple of years, there have been many policy interventions which have been initiated. One of them, namely the carbon market is under notification; others like Green Public Procurement, Green Cement taxonomy and National CCUS Mission are in the advanced stages and are expected to be implemented in the next couple
of years.
How do you see the future of green cement in global construction?
Globally the built environment accounts for 40 per cent CO2 emissions; and the maximum embodied emissions come from cement and concrete. There is a lot of innovation happening in cement, concrete and construction. Basically, how we build and what material we use. And this is to do with both carbon mitigation as well as adaptation as the built environment is so important for sustainable living. Precast and pre-engineered buildings/structures, 3D concrete printing, ultra high performance concrete, digital and AI/ML interventions in construction, admixtures/improved concrete packing; and circularity in cement manufacturing are some examples. Low-carbon cement or green cement eventually will lead to ‘Net Zero CO2 emission’ cement, which would enable a ‘Net-Zero’ built environment that is needed for long term sustainability.

Milind Khangan, Marketing Manager, Vertex Market Research, looks at how India’s cement industry is powering a climate-conscious transformation with green cement at its core, aligning environmental urgency with economic opportunity.
The cement industry produces around eight per cent of the world’s total CO2 emissions. Process emissions, largely due to limestone calcination, contribute 50 to 60 per cent of these emissions and produce nearly one ton of CO2 per ton of cement produced.
India is a leading cement producer with an installed capacity of around 550 million tons (MMT) as of 2024. As the Government of India advances toward its 2070 net-zero target, green cement is becoming a major driver of this shift toward a low-carbon economy. It offers environmental sustainability as well as long-term operating efficiencies at scale. With the fast-paced urbanisation and infrastructure development across the nation, the use of green cement goes beyond environmental imperatives; it is also a strong strategic business opportunity. Indian cement players are some of the most sustainable and environmentally conscious players in the world, and indigenous cement demand in India is estimated to grow at a CAGR of 10 per cent until 2030.
Innovating sustainably
Green cement is an umbrella term that includes multiple advanced technologies and processes aimed at minimising the environmental footprint, and CO2 emissions of conventional cement manufacturing. This shift from traditional practices targets minimising the carbon footprint throughout the whole cement manufacturing process.
- Clinker substitution: Substitution of high-carbon clinker with supplementary cementitious materials (SCMs) in order to considerably lower emissions.
- Alternative binders: Developing cementitious systems that require minimal or no clinker, reducing reliance on traditional methods.
- Novel cements: Introducing new types of cement that depend less on limestone/clinker, utilising alternative modified processes and raw materials.
- Energy efficiency and alternative fuels: Optimising energy utilisation in production and substituting fossil fuel with cleaner alternatives coming from waste or biomass.
- Carbon capture, utilisation, and storage (CCUS): Trapping CO2 emissions at cement plants for recycling or geological storage.
Drivers and strategic opportunities
Robust infrastructure development pipeline: The government’s continued and massive investment in infrastructure (roads, railways, housing, smart cities) generates huge demand for cement. Crucially, there is a growing preference and sometimes direct requirement under public tenders for sustainable building materials, including green cement, which is giving a significant market stimulus.
India’s national climate commitments (NDC and Net Zero 2070): India’s commitments under the Paris Agreement (NDCs) and the long-term goal of achieving Net Zero emissions by 2070 have set a clear direction for industrial decarbonisation. This national strategy necessitates action from high-emitting sectors such as cement to adopt green cement technologies and carbon-reducing innovations across the construction value chain. Notably, the Indian cement industry alone is expected to generate nearly 400 million tonnes of GHG emissions by 2030.
Regulatory mandates for fly ash utilisation: The Ministry of Environment, Forest and Climate Change (MoEFCC) has released a number of binding notifications that promote the use of fly ash from thermal power plants. These guidelines seek to reduce environmental impact by enhancing its extensive application in cement production, particularly in Portland Pozzolana Cement (PPC). Fly ash acts as a pozzolanic material, reacting with calcium hydroxide to produce cementitious compounds, hence decreasing clinker consumption, a high-energy component contributing to high CO2 emissions. Through clinker substitution facilitation, such mandates directly enable the production of low-carbon green cement.
Promotion and utilisation of blast furnace slag: Steel plant slag utilisation policies provide a ready SCM for manufacturing Portland Slag Cement (PSC). This is advantageous in terms of the supply of another key raw material for green cement manufacturing.
Increased demand due to green building movement
The larger adoption of green building codes and certification systems such as GRIHA and LEED India by builders and developers promotes the use of materials with reduced carbon content. Cement products with a higher SCM content or produced through cleaner processes are preferred. A step in this direction was achieved in October 2021 when Dalmia Cement achieved the distinction of being the first Indian cement producer to be granted the Green Product Accreditation of GRIHA.
The Indian industry is actively investing in R&D for new binders such as geopolymer cement, alkali-activated materials and limestone calcined clay cement (LC3). Research institutions including IIT Madras are collaborating with industry to scale these technologies. Although Carbon Capture, Utilisation, and Storage (CCUS) is still at a nascent stage in India, it represents a potential frontier for long-term decarbonisation in the cement sector.
The MoEFCC has published draft regulations under the Carbon Credit Trading Scheme (CCTS), 2023, in the form of the Greenhouse Gas Emission Intensity Target Rules, 2025. The draft notification requires 186 cement units in India to lower their GHG emission intensity from FY 2025-26. Non-compliant manufacturers will have to purchase carbon credit certificates or face penalties, creating a clear regulatory and financial incentive to adopt cleaner technology. The CCTS will promote technology and practice adoption that reduces the carbon intensity of cement manufacturing, potentially resulting in the use of green cement and other low-carbon substitutes for cement.
India’s leading cement companies like UltraTech, Shree Cement, and Dalmia Bharat have made science-based targets and net-zero emissions pledges in line with the GCCA 2050 Cement and Concrete Industry Roadmap. These self-declarations are hastening the shift towards clean cement manufacturing technology and renewable energy procurement.
Challenges and complexities in India’s green cement transition
Economic viability and cost challenges: High production costs associated with low-carbon cement technologies remain a significant hurdle. The absence of strict carbon pricing and poor financial incentives slow down rapid uptake on a large scale. Although green cement is currently costlier than conventional options, greater market adoption and scale-driven efficiencies are expected to progressively narrow this price gap, enhancing commercial viability over time. As these technologies mature, their broader deployment will become more feasible.
Inconsistent supply chain of SCMs: A dependable supply of high-quality Supplementary Cementitious Materials (SCMs), such as fly ash and slag, is crucial. But in the course of decarbonisation of India’s power generation and industry sectors, SCMs reliability and availability may become intermittent. Strong, decentralised logistics and material processing units must be developed in order to provide uninterrupted and economical SCM supply chains to cement producers.
Gaps in technical standards and performance benchmarks
Although PPC and PSC are well-supported by existing BIS codes, standards for newer materials such as calcined clay, geopolymer binders and other novel SCMs require timely development and updates. Maintaining steady performance, lasting robustness, and usage dependability in varying climatic and structural applications will be key to instilling market faith in other forms of cement formulation. Market stakeholders are also supporting separate BIS codes for the green cement sub-categories for helping to build and sustain standardisation and trust.
Scaling of emerging technologies
Scaling promising technology, especially CCUS, from pilots to commercial scales within the Indian context involves significant investment of capital, technical manpower, and a facilitating regulatory environment. The creation of infrastructure for transportation and long-term storage of CO2 will be critical. While these facilitative systems are implemented, cement makers will be well-placed to decarbonise their operations and achieve national sustainability goals.
The way ahead
The Indian cement industry is poised to enter a revolutionary era, where decarbonisation and sustainability are at the heart of expansion. Industry players and the government need to join hands in an integrated manner throughout the cement value chain to spearhead this green revolution. Cement companies must embrace new technologies to lower the emissions like the utilisation of alternative fuels like biomass, industrial wastes, and recycled materials and utilisation of waste heat recovery systems to make energy efficient. The electrification of logistics and kilns, investigation of high-heat alternative products, and CCUS technology investments must be made to decarbonise production. Sophisticated additives such as polymers can improve cement performance with reduced environmental footprint.
At the policy level, the government has to introduce support measures such as stable carbon pricing, tax relief, viability gap funding, and initiatives such as the PLI scheme to encourage the use of renewable energy in cement manufacturing. Instruments such as carbon contracts can stabilise carbon credit prices and reduce market risk, encouraging investment in low-carbon technologies. Updating BIS standards for newer green cement formulations and SCMs is also critical for market acceptance and confidence. Green cement mandates in public procurement and long-term offtake contracts have the potential to generate stable demand, and green financing windows can guarantee commercial viability of near-zero carbon technologies. Cement greening is not a choice, it is a necessity for constructing a climate-resilient, sustainable India.
About the author:
Milind Khangan, Marketing Manager, Vertex Market Research, comes with more than five years of experience in market research and lead generation. He is responsible for developing new marketing plans and innovations in lead generation, having expertise in creating a technically strong website that generates leads for startups in market research.

Cement demand to rise 7% in FY26

India Sets Up First Carbon Capture Testbeds for Cement Industry

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Holcim UK drives sustainable construction

Cemex invests in AI optimisation through OPTIMITIVE

Cement demand to rise 7% in FY26

India Sets Up First Carbon Capture Testbeds for Cement Industry

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Holcim UK drives sustainable construction
