Connect with us

Concrete

Assessment of structures

Published

on

Shares

All civil engineering structures are initially designed depending on certain design criteria, such as design loads, allowable stresses etc. But, damage due to an extreme event is always possible in a structure during its design life. Sometimes, undetected and un-repaired damage may lead to structural failure demanding costly repair and a huge loss of lives. Therefore, the problem of maintenance and repair of existing engineering structures involves damage detection at an early stage.

For massive structures like bridges, dams, flyover, ROB, RUB, chemical plants, thermal and nuclear plants, silos, pre heater towers, chimneys, etc., which were constructed some 20-40 years ago, it is necessary to test its functionality under the present load situation and quantify damage if any. Since it involves huge expenditure to demolish and reconstruct them, it is important to evaluate the residual life-RLA (residual life analysis) of these structures.

Performing NDT of concrete structures, which is a basis for the evaluation of RLA/remnant life analysis ??RLA studies. Many methods are traditionally used for flaw characterisation and measurement of residual stress. Combining these inputs many parameters, including mechanical properties, factor of safety in design, conservative operation of unit, inaccuracy in data extrapolation, overestimation of corrosion effects, etc., would be assessed.

Damage Detection and Condition Assessment of Civil Structures

In the assessment of existing structures, engineers are increasingly faced with not only the challenges of early detection of damage, but also the evaluation of structure performance and behavior under damage, and economical and efficient retrofitting of the damaged components commonly found in older structures. In order to maintain the safety and integrity of structures, research on the damage mechanism, assessment of structure performance in damaged status, and innovative technologies and materials to rehabilitate, repair, and retrofit structures are of great significance.

Retrofitting of a cement Plant Preheater Tower

Inspection by plant personnel revealed cracking in the concrete frame of a 326-ft-tall, 7-level preheater tower. Onsite plant engineers deemed the cracking significant, especially since the structure supports critical manufacturing process equipment. A structural engineering consulting firm was retained to evaluate the extent of the problem and formulate a repair plan on a fast-track basis. The firm mobilised at the site in less than 24 hours and performed an initial structural safety assessment. A comprehensive structural evaluation indicated that the structure required strengthening. Restoration consultants were engaged to assist locally with engineering and construction administration.

A specialty repair contractor also was engaged to review the constructability of several alternate repair schemes and maintain the fast-track schedule. After considering structural capacity and serviceability requirements, durability issues, the high-temperature operating environment, constructability, and an aggressive construction schedule, the team recommended a retrofit consisting of bonded post-tensioning within internal holes drilled in the beams. This solution was quite extraordinary, as it required precision-drilling horizontal holes up to 87 feet long in the beams of the elevated frame structure, without cutting existing embedded reinforcement.

Nondestructive impulse radar testing was used to locate existing embedded reinforcing steel, as well as to monitor the drilled holes’ trajectory. This process helped ensure proper hole alignment and prevent damage to embedded steel. The cored holes served as post-tensioning ducts. The repairs were executed on a fast track basis and under challenging circumstances, which included working high on the exposed structure through a cold winter with severe wind conditions. The unique retrofit resulted in a structure that is stronger, more serviceable, and more durable than the original tower. The project represented an exceptional team effort, and its success is attributable to the leadership of the owner and client, the ingenuity of the engineering team, and the resourcefulness of the contractor.

Case study authored by: Kolf, Peter R, Oesterle, Ralph G

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

thyssenkrupp Polysius, SaltX partner for electrified production

Published

on

By

Shares

thyssenkrupp Polysius and Swedish startup SaltX have signed a Letter of Intent (LOI) to co-develop the next generation of electrified production facilities, advancing industrial decarbonisation. Their collaboration will integrate SaltX’s patented Electric Arc Calciner (EAC) technology into thyssenkrupp Polysius’ green system solutions, enabling electric calcination, replacing fossil fuels with renewable energy, and capturing CO2 for emission-free production. Dr Luc Rudowski, Head of Innovation, thyssenkrupp Polysius, emphasised that this partnership expands their portfolio of sustainable solutions, particularly in cement, lime, and Direct-Air-Capture (DAC). Lina Jorheden, CEO, SaltX, highlighted the significant CO2 reduction potential, reinforcing their commitment to sustainable industrial processes.

Continue Reading

Concrete

Terra CO2 secures $82m to scale low-carbon cement technology

Published

on

By

Shares

Terra CO2, a US-based sustainable building materials company, has raised $82 million in Series B funding, co-led by Just Climate, Eagle Materials and GenZero, with continued support from Breakthrough Energy Ventures. The investment will accelerate the commercial deployment of Terra’s OPUS technology, enabling the construction of multiple production facilities across North America and Europe. With the cement industry responsible for 8 per cent of global CO2 emissions, Terra’s solution provides an immediate, scalable alternative using abundant raw materials that integrate seamlessly with existing infrastructure. The company has secured key partnerships, including a deal with Eagle Materials for multiple 240,000-tonne plants.

Continue Reading

Concrete

Titan Cement Group enters South Asia

Published

on

By

Shares

Titan Cement Group has expanded into the South Asian market through a joint venture with JAYCEE, an India-based producer of supplementary cementitious materials. Titan will hold a majority stake in the newly formed company, Atlas EcoSolutions, which will focus on sourcing, processing, marketing, and distributing SCMs globally. This initiative aims to support sustainable construction by promoting alternatives to clinker-based cement. Jean-Philippe Benard, Head of Supply Chain and Energy Development, emphasised that the venture aligns with Titan’s strategy to lead in low-carbon building materials while reinforcing its commitment to sustainability and innovation. The move strengthens Titan’s position in a high-growth market while ensuring long-term access to SCMs.

 

Continue Reading

Trending News