Connect with us

Economy & Market

TernaCem – New Alternative Binder for cement

Published

on

Shares

In an effort to tap the further potential for CO2 emmission reduction, The HeidelbergCement Technology Center (HTC) has been working on the development of alternative binders that work more or less without conventional clinkers for several years.

THE cement industry is the source of about 5 per cent of the global anthropogenic CO2 emissions. On average, the production of one tonne of cement clinker generates around 800 kg of CO2. From this amount, about 40 per cent is due to the energy-intensive burning process; 60 per cent is attributed to raw materials in the course of limestone de-carbonisation. By using alternative fuels such as tyres, meat and bone meal, or sewage sludge, among other measures, HeidelbergCement has succeeded in reducing the specific CO2 emissions to 0.621 tonne of CO2 per tonne of cement. A further reduction through process-related measures and the use of alternative fuels is only possible to a very limited extent.

Additives can be used, however, to further improve the CO2 balance of products based on Portland cement. These alternative substances are by-products from steel manufacturing or coal-fired power plants, and serve as source materials for composite cements. Portland cement clinker is partly replaced, for example, by blast furnace slag, fly ash, or silica fume, whereby the specific use of these additives often even improves the properties of the cement product. However, this is only possible to a certain extent because of the limited availability of high-quality raw materials.

One of the most promising concepts in this study was a calcium sulfoaluminate-belite binder (CSAB). Calcium sulfoaluminate (CSA) cements have been produced for use in building chemicals for a long time, especially in China. They are mainly used in screeds, tile glues, and special products. A characteristic feature is that they form ettringite very quickly and therefore exhibit a very high early strength. Experiments have already been performed with a view to use these cements for construction purposes, but their durability has not yet been sufficient. Nonetheless, Dr. Wolfgang Dienemann, Director of Global Research & Development, sees this as a worthwhile approach: "If we combine CSA cements and their high early strength with belite (dicalcium silicate), the slow-reacting clinker phase in classic portland cements, it might be possible to combine the advantages of both systems in one cement. The ettringite formation is responsible for the early strength, while belite hydration-as with Portland cement-leads to calcium silicate hydrates, which form a permanent and durable structure. This combination seemed promising enough to us that we continued working on it." In 2010, the researchers at HTC started investigating the cement chemistry of CSAB under various process conditions. Dienemann: "For the first time, we looked more closely at the ternesite clinker phase, which was considered to be non-reactive until now. This phase does not react with pure water, but if the pore solution contains aluminium, there occurs an immediate chemical reaction and a solid structure is formed." After the first successful burning tests in the lab, HTC registered two patents for the manufacturing of clinker containing ternesite (Belite Calciumsulfoaluminate Ternesite – BCT) in the late summer of 2012, and four patents for applications using ternesite containing clinker in various binder systems (equal to cement types). The advantages of ternesite containing clinker are obvious: Because of its chemical composition and manufacturing at lower temperatures, the new product generates up to 30 per cent less CO2 than normal Portland cement clinker. There is also an improvement in energy efficiency, as the burning temperature is 150 to 200¦C lower and the fuel consumption is reduced by about ten per cent. The electricity costs for the manufacturing process are likewise lowered by about 15 per cent, because less energy is required, particularly for the grinding process. Dr. Wolfgang Dienemann describes the next steps at HTC as follows: "Since the addition of high-quality aluminium carriers such as bauxite is very expensive, we are currently experimenting in alternative trials with the addition of waste materials containing aluminium, e.g. brown coal fly ash and other slags. In addition, the use of other industrial by-products, such as FGD gypsum, could also be considered." The first large-scale trial is planned for this year in one of the German HeidelbergCement plants, where the new products are to be manufactured for the first time with the existing plant technology.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

CCU testbeds in Tamil Nadu

Published

on

By

Shares

Tamil Nadu is set to host one of India’s five national carbon capture and utilisation (CCU) testbeds, aimed at reducing CO2 emissions in the cement industry as part of the country’s 2070 net-zero goal, as per a news report. The facility will be based at UltraTech Cement’s Reddipalayam plant in Ariyalur, supported by IIT Madras and BITS Pilani. Backed by the Department of Science and Technology (DST), the project will pilot an oxygen-enriched kiln capable of capturing up to two tonnes of CO2 per day for conversion into concrete products. Additional testbeds are planned in Rajasthan, Odisha, and Andhra Pradesh, involving companies like JK Cement and Dalmia Cement. Union Minister Jitendra Singh confirmed that funding approvals are underway, with full implementation expected in 2025.

Image source:https://www.heavyequipmentguide.ca/

Continue Reading

Concrete

JSW Cement gears up for IPO

Published

on

By

Shares

JSW Cement has set the price range for its upcoming initial public offering(IPO) at US$1.58 to US$1.67 per share, aiming to raise approximately US$409 million. As reported in the news, around US$91 million from the proceeds will be directed towards partially financing a new integrated cement plant in Nagaur, Rajasthan. Additionally, the company plans to utilise US$59.2 million to repay or prepay existing debts. The remaining capital will be allocated for general corporate purposes.

Continue Reading

Concrete

Cement industry to gain from new infrastructure spending

Published

on

By

Shares

As per a news report, Karan Adani, ACC Chair, has said that he expects the cement industry to benefit from the an anticipated US$2.2tn in new public infrastructure spending between 2025 and 2030. In a statement he said that ACC has crossed the 100Mt/yr cement capacity milestone in April 2025, propelling the company to get closer to its ambitious 140Mt/yr target by the 2028 financial year. The company’s capacity corresponds to 15 per cent of an all-India installed capacity of 686Mt/yr.

Image source:https://cementplantsupplier.com/cement-manufacturing/emerging-trends-in-cement-manufacturing-technology/

Continue Reading

Trending News