Connect with us

Technology

Nord Drivesystems in Alps

Published

on

Shares

Heavy duty work for industrial gear units from Nord Drivesystems in the Alps

In an extremely demanding construction project in the Swiss Alps, at an altitude of around 1700 m and almost 600 m inside a mountain, large chambers are being excavated to form the new expanded underground centre of a pumped storage hydroelectric power station that will increase its present power output from 480 mw to 1480 mw. With an extreme incline of 45 degrees and a height difference of approximately 180 m, conveyor systems in a sub-station are transporting 500 tonne of excavated material per hour, around the clock, using conveyor belts that are driven by Nord industrial gear units.

The expansion project "Linthal 2015" will upgrade three existing power station systems and increase their overall output power from 480 mw to 1480 mw. A new underground pumping station will drive water from a lower reservoir at an altitude of 1860 m into a lake reservoir which is about 600 m higher. The pumped storage power station will use this elevation difference to produce hydroelectric power on demand. The client for this project is Kraftwerke Linth-Limmern AG, a part of Axpo Holding AG.

The power requirements of a national electricity grid are subject to large fluctuations over the course of a single day. At night, power consumption is at a minimum and typically reaches a peak at midday and in the evening. In Switzerland, electric power is mainly supplied by nuclear and river-based hydroelectric power stations. Biomass and conventional thermal power stations also make a contribution. In contrast to nuclear and river-based plant, pumped storage hydroelectric power stations can rapidly respond to changes in demand. The optimum interplay between these various types of power generation technologies ensures that a reliable and economic power supply is maintained around the clock.

Pumped storage stations assure peak-time energy: Unlike pure storage power stations, pumped storage stations cannot just generate energy at peak times; they can also convert excess power, which is generated during periods of low demand, into valuable peak-time energy. The demand for peak energy is continuously increasing throughout the entire European grid network. Apart from the general increase in annual consumption, another important reason for this is the intensive development of wind energy in the coastal regions of the European Union. This factor results in an increase in the so-called stochastic energy, which depends on random wind conditions and therefore cannot be reliably planned. If power from wind energy is generated in times of low demand, the excess can be used to pump back water into the higher reservoirs of pumped storage power stations. If there is no wind during the day, pumped storage power stations can then cover this power deficit. A further reason for the increasing demand for peak energy is the opening of the electricity market. As power can be purchased by consumers from anywhere on the free market, power distribution networks must increasingly be regulated by system services, which ensure a reliable supply.

Pure hydroelectric power stations have an upstream reservoir. In contrast, pumped storage plants have an additional lower reservoir. If power is generated, water from the upper reservoir flows into the pressure system. The water drives turbines, which in turn power the motor generator. The electrical power which is produced is fed into the grid. After leaving the turbine, the water flows into the lower reservoir. If too much electricity is produced, the water can be pumped back from the reservoir into the higher altitude lake, from where it can be used at a later time to generate electricity. Pumped storage power stations can therefore store energy in the form of water in reservoirs. Pumped storage is a well-established method of compensating for fluctuations of supply and demand in the grid network, in an environmentally friendly and economic manner.

The scope of the project "Linthal 2015" includes excavation and construction work for the underground central station of the pumped storage power station and the tunnel system for the water that provides the power. Construction of a new heavyweight dam for the higher lake will increase its storage volume from the present 9 to 25 million m³. Expansion work for the existing compensating reservoir is also included. Construction work on Switzerland’s largest hydroelectric project is being carried out at considerably different altitudes and inside of the mountain. The compensation reservoir at an altitude of about 800 m is the lowest point. One thousand metres above this is the upper reservoir Limmernboden with a capacity of 92 million m³. At an altitude of about 1700 m and some 600 m inside the mountain, the heart of this gigantic expansion project is being created with huge excavated chambers that will house underground stations for the four groups of machinery used in the new pumped storage power facility Limmern. The underground station consists of a 150 m long, 30 m wide machinery chamber with a maximum height of 53 m, as well as a separate transformer vault which is about 130 m long, 20 m wide and 25 m high. This central station creates the link between the two lakes via a system of upper and lower water delivery tunnels, parallel pressure shafts and other service tunnels. Personnel, materials and machines are transported to the construction site using a cable railway with a load bearing capacity of 25 tons.

The excavation work for the two chambers is completed. The work has been proceeding rapidly in an intensive 24/7, 3-shift operation. The chambers have been excavated from above and below; every day about 800 m³ of rock has been removed from the mountain and in total almost 2,445,000 m³ have been excavated to form both chambers.

Drive systems for conveyors

Industrial gear units are used in the conveyor systems which are located in the central area of the construction project "Linthal 2015". Two "S-conveyors" convey 500 t of material per hour over a distance of about 260 metres with an extreme incline of 45 degrees and a height difference of around 180 m. The excavated material is conveyed down to a crushing plant. This conveyor belt is driven by a NORD industrial gear unit with brake control, which simultaneously generates electricity. On the second conveyor belt, the crushed material is conveyed up to the gravel plant, where it is stored until it is needed for further processing as construction aggregate for the dams or as concrete for walls and ceilings. This conveyor has a belt speed of 2.2 m/s and is driven by two NORD industrial gear units, located at the right and left of the conveyor system and connected by a common shaft. With a protection class of IP55, these industrial gear units each have a drive power of 250 kw.

The industrial gear units for this massive construction project were developed according to the tried-and-tested UNICASE principle. The UNICASE is a one-piece housing block, into which all the bearing seats are integrated, with production carried out in a single stage using state-of-the-art CNC machines. The concept features extreme precision, rigidity and strength with no joints between the output side and the gear unit which are subject to radial forces or torque. The UNICASE principle enables a more compact design due to the staggered arrangement of the shafts and also allows the use of larger roller bearings that guarantee a long operating life. Industrial gear units can be right or left mounted.

Customer-oriented drive solution

The supplier of this complete drive solution was Getriebebau NORD AG, Switzerland – a member of the NORD DRIVESYSTEMS Group. Customer orientation and closeness to customers are particularly important for the drive specialists from Arnegg, near St. Gallo. Guido Eigenmann, Manager of Getriebebau NORD AG, Switzerland explains: "We sell customer benefits – not just products. As well as this we offer a comprehensive service package. In addition to commissioning, we also provide maintenance training, so that the customer knows what to look out for. It is particularly important for us to supply complete systems which are highly efficient and economical. Many users require not just drive components, but rather complete and functioning system solutions. We tailor our drive solutions to each individual customer." The plant constructor and customer of Getriebebau NORD is Marti Technik AG, which was founded in 2002 and is one of the many subsidiaries of the Swiss Marti Holding AG. Marti Technik AG is a provider of individual tailor-made solutions, principally focussed on underground construction work. Building on its many years of experience gained on large construction sites and third party projects, the company predominantly specialises in the field of tunnel boring systems, conveyor technology, switchgear construction, as well as electrical engineering. Ernst Kuster, head of maintenance and responsible for the conveyor systems is very satisfied with NORD products and services. "The very good cooperation with Getriebebau NORD Switzerland is particularly positive for me. All of our requirements were catered for. What is also remarkable is the high ability to supply. It only took about ten weeks from ordering to delivery. With other suppliers, four or five months are not unusual. All-in-all we are very satisfied – a very good cost-benefit ratio, excellent advice and support, on-schedule delivery and last-but-not-least, NORD products deliver a very high performance and are of very good quality.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Technology

M.E. Energy Bags Rs 490 Mn Order for Waste Heat Recovery Project

Second major EPC contract from Ferro Alloys sector strengthens company’s growth

Published

on

By

Shares

M.E. Energy Pvt Ltd, a wholly owned subsidiary of Kilburn Engineering Ltd and a leading Indian engineering company specialising in energy recovery and cost reduction, has secured its second consecutive major order worth Rs 490 million in the Ferro Alloys sector. The order covers the Engineering, Procurement and Construction (EPC) of a 12 MW Waste Heat Recovery Based Power Plant (WHRPP).

This repeat order underscores the Ferro Alloys industry’s confidence in M.E. Energy’s expertise in delivering efficient and sustainable energy solutions for high-temperature process industries. The project aims to enhance energy efficiency and reduce carbon emissions by converting waste heat into clean power.

“Securing another project in the Ferro Alloys segment reinforces our strong technical credibility. It’s a proud moment as we continue helping our clients achieve sustainability and cost efficiency through innovative waste heat recovery systems,” said K. Vijaysanker Kartha, Managing Director, M.E. Energy Pvt Ltd.

“M.E. Energy’s expansion into sectors such as cement and ferro alloys is yielding solid results. We remain confident of sustained success as we deepen our presence in steel and carbon black industries. These achievements reaffirm our focus on innovation, technology, and energy efficiency,” added Amritanshu Khaitan, Director, Kilburn Engineering Ltd

With this latest order, M.E. Energy has already surpassed its total external order bookings from the previous financial year, recording Rs 138 crore so far in FY26. The company anticipates further growth in the second half, supported by a robust project pipeline and the rising adoption of waste heat recovery technologies across industries.

The development marks continued momentum towards FY27, strengthening M.E. Energy’s position as a leading player in industrial energy optimisation.

Continue Reading

Technology

NTPC Green Energy Partners with Japan’s ENEOS for Green Fuel Exports

NGEL signs MoU with ENEOS to supply green methanol and hydrogen derivatives

Published

on

By

Shares

NTPC Green Energy Limited (NGEL), a subsidiary of NTPC Limited, has signed a Memorandum of Understanding (MoU) with Japan’s ENEOS Corporation to explore a potential agreement for the supply of green methanol and hydrogen derivative products.

The MoU was exchanged on 10 October 2025 during the World Expo 2025 in Osaka, Japan. It marks a major step towards global collaboration in clean energy and decarbonisation.
The partnership centres on NGEL’s upcoming Green Hydrogen Hub at Pudimadaka in Andhra Pradesh. Spread across 1,200 acres, the integrated facility is being developed for large-scale green chemical production and exports.

By aligning ENEOS’s demand for hydrogen derivatives with NGEL’s renewable energy initiatives, the collaboration aims to accelerate low-carbon energy transitions. It also supports NGEL’s target of achieving a 60 GW renewable energy portfolio by 2032, reinforcing its commitment to India’s green energy ambitions and the global net-zero agenda.

Continue Reading

Trending News