Connect with us

Technology

Lafarge Construction Development Lab

Published

on

Shares

Indian Cement Review visited Lafarge´s Construction Development Lab to know more about the science that goes into developing the perfect concrete mix. Here is a glimpse of new innovations from Lafarge.

With c With cement plants in Chattisgarh, Jharkhand, Rajasthan and West Bengal, the total production capacity of Lafarge is currently over 8 million tonnes. The company is one of the leaders in the ready-mix concrete business, with 66 plants across the country. Lafarge has two aggregates mines/crushers, one each at Badlapur (Maharashtra) and Kotputli (Rajasthan). Lafarge Readymix concrete offers innovative products that include the Mega series, Concrete Master, Artevia and Hydromedia.

The company also partners with local developers to provide solutions that make the various stages of construction simpler, faster and affordable. This partnership involves continuous interaction of the product development team at Lafarge with its consumers, gathering their feedback and supporting them with customised products and testing facilities.

Lafarge has set up a one of its kind Construction Development Lab (CDL) in India for such tasks. Over all, the group has three such labs dedicated to construction development, one in Lyons (France) and the other in Chongqing (China). The lab in Mumbai, India, was opened recently, in 2012. These laboratories support the group´s international R&D network; the CDL in India focuses on developing products that meet the needs peculiar to the Indian market

We visited the CDL lab in Mumbai to take a closer look at the process. Maruti Srivastava, VP Marketing for Lafarge Aggregates and Concrete India and Jean – Philippe Thierry, QC and Product Development Head for Lafarge Aggregates and Concrete India, took us through several stages of product research and development process at the lab. Srivastava is an MBA and a civil engineer with more than 10 years of experience in readymix industry and has managed different portfolios in this industry. Currently he is VP Marketing for Lafarge Aggregates and Concrete India , while Thierry has a Degree in Materials Science with more than ten years of experience in concrete R&D. Previously Jean-Philippe played a key role in the transfer of concrete technology to Lafarge operations in Asia and Middle-East including India. He is currently in charge of the Quality Control and Product development for Lafarge Aggregates and Concrete in India. We took a guided tour of the lab to appreciate the scientific methodology that goes behind research, development and validation of new products at Lafarge.

The three-storey lab has floors dedicated to developing new mixes, product testing, product demonstration and for testing in real- life conditions. A huge area around the lab is dedicated to building structures using materials developed at the lab.

Researchers at the lab work closely with experts in the materials science and construction techniques across India. The Lafarge team showed us several interesting products designed to tackle issues typical to construction situations in India. Here is a list of some of the innovations that caught our eye:

Coffor House
Lafarge has built a three- storey structure, which stands right next to the lab with its innovative concrete product including Concrete Master and Roof Master. What is really striking about the structure is that it does not have any embedded steel reinforcement to support itself. The structure stands tall on the strength derived from concrete and formwork. Moreover, the structure applies a new method in constructing multi- storey buildings.

Higher grades
Lafarge has produced some of the highest grade concretes available. The higher the strength, the better the load- bearing capacity of the structure and its components. A column made with M 60 or M 90 grade concrete will have a significantly smaller footprint than that made using M30. This allows for building columns with smaller footprint and thinner walls leading to a higher carpet area that can be sold, which, in turn, translates into higher profits for builders. Besides, these structures require lesser reinforcements, thus saving on the cost of steel, too. Many builders are now opting for higher grade concrete as it offers better returns on investment. Stronger concrete also opens up new possibilities for engineers. Lafarge has supplied M 95 grade concrete for the construction of one of the tallest residential buildings in Mumbai , a testament of the concrete´s strength.

Aggregates
Being one of the leaders in aggregates (Number Two in the world), Lafarge Aggregates brings to India, international expertise and extensive market knowledge. Being the only organised player in the Indian aggregates market, one can naturally expect superior product performance from the company.

Lafarge uses mined and manufactured aggregates and sand. The lab studies the effect of various types of aggregates on the RMC produced and consequently, structural integrity. The manufactured sand is first sieved to obtain material of uniform grading for producing RMC of consistent quality. The M 95 grade concrete is made using the manufactured sand.

´Sieving is important as it imparts consistency to the product. Size variation in aggregates leads to inefficient binding and lowers the concrete strength,´ explains Srivastava. Though aggregate is not an innovation here, the lab has studied the effects of various aggregate sources in depth and this expertise is made available to customers looking for better concrete products.

Lightweight concrete
Lightweight concretes have an endless range of applications. We were surprised to see a display where a block of concrete was kept floating in a water tank. The concrete is so light in weight that its density is lesser than that of water (1Kg/m3) and so, it was floating in it. The concrete has tiny beads of binder material mixed in the concrete mix. These beads impart low weight characteristics to it without compromising on structural integrity. One would not realise the lightness of the material till the block was held in the hand. The block was not porous nor did it have any air pockets. It was solid concrete, only a lot lighter in weight.

Hydromedia TM
Imagine highways and parking lots that get dry seconds after heavy rain. It is possible with Hydromedia TM, a type of concrete developed by Lafarge that is permeable to water. It is a pervious concrete system that allows free water to flow directly through the concrete system to the substrata below it. The concrete lets water pass through it in seconds, as if it was a sieve. The material has average permeability of 150 – 1000 L/min/m´.

With applications such as in parking lots and pavements, Hydromedia TM absorbs rainwater and allows it to run off into soil. This allows for natural groundwater recharge and helps in reducing the load on the stormwater drainage system. If concrete is laid around a tree, it will allow water to seep through, reaching the roots of the tree. Channels made of Hydromedia TM could be placed along the roadside acting as drainage systems or used as pathways in garden, footpaths, tennis courts, industrial areas, etc. This concrete is specifically useful for tackling water- logging issues in several Indian metropolitan cities. The applications are plenty.

Artevia
The lab as well as the outdoor area showcased splendid examples of decorative concrete. Lafarge supplies decorative concrete under the Artevia TM brand, with various possibilities of texture, colour and print on concrete for indoor and outdoor use. Artevia combines freedom of design with low maintenance and durability. Some of the samples looked stunningly real and beautiful; specially, the detailing seen in wood textured concrete was unbelievably real. The colour range too, was quite wide.

ArteviaTM is much more than just another kind of concrete; it is a beautiful design material that keeps all the advantages of concrete. It is hard- wearing and long- lasting and available in an array of splendid colours, patterns and textures. Home- owners, architects and landscapers can apply their unrestricted creativity to make a variety of flooring used in kitchens, on terraces, at pool sides, on garden paths and even on walls. Like any concrete, it can be moulded when fresh. Combined with brick, metal, wood or glass it makes for a wealth of unbelievable possibilities.

Concrete for everyone
Gone are the days when using concrete meant setting up huge mixing plants or ordering huge volumes in transit mixers. Now RMC is now available in small volumes for small buyers, too. It was at the Mumbai CDL that Lafarge developed and perfected a process to supply concrete in bags. The company offers Concrete Master, a range of ready to use concrete and mortar in bags delivered directly to the job site. Concrete master is available in 30 kg bags can be used effectively for building columns and walls for small structures. It also leads to faster and cleaner construction without any wastage in the process. Concrete Master enables availability of RMC to individual home builders in small volumes. It can also be delivered efficiently through narrow alleys and congested areas.

New formulations
The scientist at the lab keep experimenting with new combinations of materials to be mixed to produce new concrete formulations. We saw a range of materials being tried for RMC right from simple fly ash to advanced polymers. The effect of such performance chemicals has taken ready- mix concrete to a new level.

Different mixes developed in the lab are tested rigorously for their characteristics. As different environmental conditions can have different impact on the product`s performance, the effect of each factor must be studied carefully and in isolation. Humidity is one of such key parameters and its effect must be factored in the development process. The lab has a well equipped walk- in humidity testing chamber; the room has different test walls built inside where new concrete mixes were being tested. The chamber also has a storage room for keeping different concrete blocks in different humidity conditions. Data from different combinations can be used to perfect the mix formulation.

The ground floor is more like a workshop where promising mixes were tried on a large scale in an open environment. Here, lab technicians and engineers study the structures built using various concrete mixes. The floor also housed a concrete strength-testing machine. The system allows engineers to measure the exact amount of load bearing capacity of the concrete and its modulus of elasticity. These numbers are critical for engineers to design a safe structure. The machine is regularly calibrated using a standard aluminium block (reference material) to ensure accuracy of the figures obtained.

Collaborative research
Lafarge R&D works in close partnership with the world´s leading research institutes, schools and universities, to facilitate progress in research into building materials. The group shares its experience and knowledge while benefiting from complementary expertise. Research contracts, internships, university exchange programmes, seminars and visits are all organised within the framework of these partnerships. A publication policy for international reviews has also been implemented. The lab has been working in association with IITs and such other reputed science and technology centres in India.

Connecting with the market
With the CDL facility in Mumbai, Lafarge has strengthened its associations with local contractors, builders, developers, architects and small individual home- owners. The insights that were gained from understanding customers in the local market have been very well applied to develop customised concrete solutions for their construction needs.

The lab has helped customers gain access to technical expertise in concrete and to then make technically informed decisions.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Technology

M.E. Energy Bags Rs 490 Mn Order for Waste Heat Recovery Project

Second major EPC contract from Ferro Alloys sector strengthens company’s growth

Published

on

By

Shares

M.E. Energy Pvt Ltd, a wholly owned subsidiary of Kilburn Engineering Ltd and a leading Indian engineering company specialising in energy recovery and cost reduction, has secured its second consecutive major order worth Rs 490 million in the Ferro Alloys sector. The order covers the Engineering, Procurement and Construction (EPC) of a 12 MW Waste Heat Recovery Based Power Plant (WHRPP).

This repeat order underscores the Ferro Alloys industry’s confidence in M.E. Energy’s expertise in delivering efficient and sustainable energy solutions for high-temperature process industries. The project aims to enhance energy efficiency and reduce carbon emissions by converting waste heat into clean power.

“Securing another project in the Ferro Alloys segment reinforces our strong technical credibility. It’s a proud moment as we continue helping our clients achieve sustainability and cost efficiency through innovative waste heat recovery systems,” said K. Vijaysanker Kartha, Managing Director, M.E. Energy Pvt Ltd.

“M.E. Energy’s expansion into sectors such as cement and ferro alloys is yielding solid results. We remain confident of sustained success as we deepen our presence in steel and carbon black industries. These achievements reaffirm our focus on innovation, technology, and energy efficiency,” added Amritanshu Khaitan, Director, Kilburn Engineering Ltd

With this latest order, M.E. Energy has already surpassed its total external order bookings from the previous financial year, recording Rs 138 crore so far in FY26. The company anticipates further growth in the second half, supported by a robust project pipeline and the rising adoption of waste heat recovery technologies across industries.

The development marks continued momentum towards FY27, strengthening M.E. Energy’s position as a leading player in industrial energy optimisation.

Continue Reading

Trending News