Connect with us

Concrete

Cement-based building materials

Published

on

Shares

Cement is an intermediate product and is always converted into some other form to have a useful end product. The authors-JD Bapat and Kalpana Karthikeyan-take stock of a few new-generation products that are making inroads in the construction industry.

Concrete is a cement-based building material used in construction industry on very large scale. However there are many other cement-based materials used in to improve the economy, conserve materials, energy and to reduce the carbon footprint of construction. This article focuses on the following four cement-based building materials: dry mixed mortar (DMM) plasters, cement-based fly ash bricks, autoclaved aerated concrete (AAC) blocks, and micro-concrete for concrete repair work.

DMM plaster
The cement-based DMM plaster is different from job-site mortar plaster. It is manufactured in a factory with dedicated facilities for batching and blending of all the necessary ingredients in the controlled process. In this way, DMM plaster with well-defined properties and performance to meet specific requirements and applications can be produced.

DMM plaster provides excellent technical properties to meet the stringent performance requirements which are common in the current construction scenario, such as crack free surface, no leaching and aesthetic look. The use of DMM plaster is cost effective, reducing potential construction problems with the long-term integrity of structures with a simple materials approach. The advantages of DMM plaster are wuality controlled and factory blended to maintain consistently high quality, excellent adhesion, no cement and sand storage required at site, reduces wastage, better workability, suitable for wide range of masonry/concrete backgrounds, fibre reinforced for shrinkage crack resistance, aesthetic look due to better finish, and no leaching. Most DMM plasters require only the addition of potable water and mixed with a simple mixer to produce high-quality fresh mortar for wall application. Normal curing process is followed. Most of the high-performance plasters are usually based on extensive development process and tests in order to achieve the desired materials properties. The basic raw materials are: cement, filler and fine aggregate.

The gradation of aggregate and the choice of the filler are critical. Desirable properties of DMM plaster in fresh and hardened state are as follows.

Mixing time: Mixing time of DMM plaster is one of the important parameters to define its ease of application for the mason. Dry mortar powder should quickly mix with water to get the desired workability.

Workability retention (pot Life): Workability retention is the time taken by fresh mortar/concrete to lose its plasticity. Once the mortar is mixed with water it has to maintain its workability till application, for a reasonable period of time: minimum 60 m in peak summer noon and maximum 90 m in the morning/evening or winter season. Workability Retention can be measured from the time of adding water to dry mix till it loses its plasticity i.e. its nature to stick to wall, when mason applies. Loss of workability before application encourages meson to add water to obtain desired workability and such plaster develops cracks after hardening.

Drying time: Plaster should get surface-dried after application, within certain period of time, to start surface finishing and curing. During the process of curing, plaster attains its early strength and binds properly to the substrate (wall/roof top). Addition of polymers can delay surface drying. Polymer mixed DMM may also stick to trowel and the float used for surface finishing, making the whole process difficult and time-consuming

Coverage area: Good coverage area of a plaster offers cost saving to the customer. Coverage area can be measured by calculating the spread area for constant thickness. It depends on the bulk density of plaster. Higher is the density of plaster lower is the spread area. Density of DMM also affects porosity. Optimum bulk density should be obtained balancing the two factors. Typical coverage can be expressed for 10 mm thickness as: m2/kg

Rebound loss: Rebound loss of a plaster shows its capacity to stick to the wall. Lesser is the rebound loss, lesser the wastage of plaster during application. Rebound loss depends on many factors, irrespective of the nature of plaster.

Firstly, it varies from mason to mason. Sometimes the masons’ handling makes difference in the rebound loss.

Second factor is the water content of a plaster mortar. If water is higher than recommended, mortar applied on the wall slides and does not stick properly. If water is lesser than recommended, mortar gets brittle and falls down immediately. Third factor is "saturation of backing surface". Any readymade plaster product should be used only with recommended water content. Water content fixed by manufacturer is enough to prepare a workable mix. It is very important to make backing surface (substrate) wet till it gets saturated and surface dry. When the surface is not saturated, it absorbs water from the plaster and makes it brittle. Similarly, when the surface is over saturated, excess water makes plaster flowing down the wall. The surface of application should be saturated-surface-dry.

Binding property: The binding of DMM to the backing surface (wall with red clay bricks, fly ash bricks or AAC blocks and roof top) must be tested before application.

Compressive strength: No standards specifically mentions about the compressive strength of cement wall plaster. However, experience shows it should have strength of at least 7 MPa at three days.

Cement-based fly ash bricks
The IS 16720: 2018 gives the specification of fly ash-cement bricks. Pulverized fuel ash or fly ash (FA) is a byproduct from thermal power stations, which use pulverised coal as fuel. This national resource can be gainfully utilised for manufacture of FA-cement bricks as an alternative to common burnt clay bricks, leading to conservation of natural resources and improvement in environment quality. The FA-cement bricks are made from materials consisting of FA in major quantity, cement and aggregate. These bricks are manufactured by mixing of all ingredients, which are then moulded into bricks and are de-moulded when sufficiently hardened and then subjected to curing.

FA and cement together should be considered as binder. IS specifies, FA content should not be less than 35%. However, FA could be as high as 65 per cent depending upon quality of both cement and FA. It will be worthwhile to find the strength of FA+ cement mixture, before deciding proportions. Sand or bottom ash from boiler can be used as aggregate. Nominal maximum size of aggregate should be passing 6.3 mm sieve. The typical dimensions of FA-cement bricks are given in Table 1.

The mixing of ingredients should be done in suitable mechanical mixer. The uniformity of mixture should be tested in terms of color and consistency. The mixture thus prepared may be compacted in moulds by hydraulic or vibratory press or hydraulic-cum-vibratory press and finished to proper size without broken edges. After demoulding, the bricks should be protected till they develop sufficient strength, before curing. Curing can be done with water as per IS 456, mist or steam, so as to develop sufficient strength as required by the designated category. Table 2 gives classification of FA-cement bricks on the basis of 28-day wet compressive strength. The average drying shrinkage is limited to 0.05 per cent (max). The water absorption should be below 20 per cent (mass) for Class up to 10 and below 15 per cent (mass) for higher classes. Typical FA-Cement bricks and red clay bricks are shown in Plate 1.

Advantages of FA-cement bricks over conventional red clay bricks:

  • The strength of common red clay bricks lies in the range of 3.5 to 5 MPa; whereas that of FA-Cement bricks goes up to 15 MPa. Strength also increases over a period of time.
  • Lesser water absorption hence requires less water for curing.
  • Uniform dimensions and more dimensional stability.
  • Lesser transit waste.

AAC blocks
They are also known as cellular blocks. Specification is given in IS 2185 (Part 3). Autoclaved aerated concrete (AAC) is a versatile lightweight construction material and usually used as blocks. Compared to normal dense concrete, AAC has low density and excellent sound and heat insulation properties. The density of AAC is in the range of 450-1000 Kg/m3 as against 2300-2500 Kg/m3 for that of the dense concrete. Plate ? 2 shows typical AAC blocks. The common raw materials used while making AAC are given in the Table – 3

The above proportions may vary subject to different plant practices and requirement of AAC. Quartz-rich sand and gypsum is also be used in the raw mix. Aluminium is added as a pore forming agent. Instead, suitable foaming agent can also be added; however, that method is out of the scope of the present paper. The aluminium reacts with soluble alkalies from cement and calcium hydroxide to form hydrogen bubbles according to chemical reaction: Al + 2OH- + 2H2O ? Al(OH)4- + H2 Hydrogen bubbles formed in reaction are responsible for the pore formation in AAC blocks. The raw mix is poured in the moulds, after mixing. The mixture rises in the moulds after formation of bubbles. It is cured at ambient temperature for about 45 minutes and cut into block pieces of required unit size, with wires. The blocks are further cured in the autoclave with high pressure steam, which also improves their compressive strength. Typical conditions in the curing chamber are steam pressure of 4-16 MPa and curing duration of 8-16 hours.

AAC blocks contain more than 80 per cent air by volume and its mass is about one-fourth of the red clay bricks, making it the lightest building material. The comparison of AAC blocks and burnt (red) clay bricks is given in Table 4.

Micro-concrete for concrete repair work
Micro concrete is a proportionate mixture of Portland cement, graded aggregate of 10 mm down size or 6 mm down size. Micro-concrete also has a non-shrink additive in the mix to limit the plastic shrinkage up to 0.4 per cent.

It is generally used in sections which are inaccessible and where there is thick reinforcement. Generally, micro-concreting is done as a repair job in structures. The distressed concrete section or spalled concrete is removed and after application of suitable bonding agent over the existing surface, micro-concrete is poured or applied. Micro-concrete is dimensionally stable and compatible to the existing structural material and section. It is to be noted that shuttering to be done leak proof while micro-concreting and proper curing methods to be followed since the heat of hydration of micro-concrete is higher than normal concrete mixes. Micro-concrete is useful for the following areas of application:

Repair of damaged reinforced concrete elements, like slabs, beams, columns, wall, etc., where access is restricted and compaction is not possible.

To jacket RCC columns, to increase load-bearing capacity (Plate – 3)

The general features and advantages of micro-concrete are as follows.

  • Can be pumped or poured into restricted locations
  • Flowable mortar, hence does not require compaction
  • Develops high initial and ultimate final strength
  • Offers excellent resistance to moisture ingress
  • Makes repaired sections durable
  • Rapid strength gain to facilitate early reinstatement

Free-flowing micro-concrete has been found to be more effective in comparison with conventional OPC concrete. When conventional mix of high strength concrete is used for repair, small gaps may remain around the reinforcement steel either due to poor compaction or settlement, providing a potential site to initiate corrosion. Free-flowing micro-concrete eliminates that problem. The mix proportion of micro-concrete for a typical strength range of 30-50 MPa is given in Table 5.

Note: Fine, sharp washed sand from zone III to IV, as per IS 383 – 2016 May also contain a non-shrink additive to limit plastic shrinkage < 0.4%

ABOUT THE AUTHORS:
Dr J D Bapat is with the Development Professional for Cement and Concrete. Email Email: consult@drjdbapat.com | Web: www.drjdbapat.com
Kalpana Karthikeyan is R&D Manager, Sanghavi Industries

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Driving Sustainability Through Innovation

Published

on

By

Shares

The 15th Cement Expo 2025 will spotlight India’s cement industry’s growth, innovation, and sustainability, showcasing cutting-edge solutions for a greener future.

The cement industry in India, the second-largest in the world, is on the cusp of remarkable growth as it continues its transition toward sustainability, innovation, and expansion. The 15th Cement Expo 2025, scheduled for November 12-13, 2025, at the Yashobhoomi Convention Centre in Delhi, will be the premier event where the industry’s foremost stakeholders converge to explore state-of-the-art technologies and solutions.
Co-located with the 11th Indian Cement Review Conference and the 9th Indian Cement Review Awards, the expo promises to be a pivotal event for professionals in the cement, construction, and infrastructure sectors. This year’s theme, “Driving Sustainability Through Technology,” highlights the sector’s commitment to decarbonisation, efficiency, and technological advancement. With India poised to add 80 to 100 million tonnes of cement capacity by 2024-25, the event will address the urgent need for sustainable, low-carbon solutions to meet the growing demand.
Before we look ahead to the 15th Cement Expo, let’s reflect on the remarkable success of the Cement Expo Forum 2025, held on March 5-6, 2025, in Hyderabad. The event attracted over 500 industry professionals and featured groundbreaking discussions on sustainability, logistics, and decarbonisation. Key sponsors and partners, such as ABB, Gebr Pfeiffer, JK Cement, and Flender Drives, showcased their latest innovations, contributing to the forum’s success.
Pratap Padode, Founder and President of First Construction Council, spoke at the event, noting, “The PPP pipeline is complemented by a provision of Rs 1.5 trillion in interest-free loans to states, earmarked for capital expenditure. With this, we have a solid plan in place. What needs to be done is to ensure that the PPP actually takes off as envisaged. To make this happen, trust must be established, and policies must be investor-friendly. Telangana, in this regard, has demonstrated ease of doing business exceptionally well.”
He added, “These financial injections into the infrastructure sector are expected to create a ripple effect, driving demand for cement as a key material in construction and development projects. The growing demand for cement is evident as infrastructure projects continue to rise across the country.”
The forum also provided invaluable networking opportunities, with attendees gaining insights from over 35 distinguished speakers and connecting with more than 50 exhibitors. The event laid a strong foundation for the upcoming Expo, showcasing the significant strides the cement industry is making toward a greener, more efficient future.
The 15th Cement Expo 2025 will focus on advancing the industry’s next big step toward sustainable growth. With India’s cement sector making significant progress in decarbonisation, a key focus will be on technologies and innovations that support carbon capture, low-carbon cement production, and energy-efficient solutions.
The expo will feature over 50 exhibitors representing all aspects of the cement industry. Whether you are a manufacturer, raw material supplier, technology provider, or logistics partner, the Cement Expo 2025 offers an ideal platform to showcase your products and solutions. Attendees will have the opportunity to explore the latest advancements in cement production technology, automation, logistics, and environmental solutions, all geared toward building a greener and more sustainable future.
Exhibitor profiles will include cement manufacturers, raw material suppliers, technology and automation solutions providers, environmental and sustainability solutions providers, cement packaging and logistics, construction equipment manufacturers, admixtures and chemical suppliers, and concrete reinforcement and structural systems.

11th Indian Cement Review Conference

Held alongside the Expo, the 11th Indian Cement Review Conference will offer delegates invaluable insights into the latest trends and innovations shaping the cement industry. Focusing on sustainability, the conference will address critical issues such as energy efficiency, plant design, and emerging technologies like carbon capture and automation.
Industry leaders will share their expertise in technical forums, while specialised activities, such as plant tours and energy audits, will provide practical guidance on improving operations and efficiency. This is a prime opportunity to network with industry stakeholders, gain hands-on experience with new technologies, and acquire actionable knowledge to enhance your business.

9th Indian Cement Review Awards

The 9th Indian Cement Review Awards will recognise the fastest-growing cement companies and industry leaders for their outstanding contributions to the sector. This prestigious event will serve as a platform to honour the pioneers of innovation, sustainability, and performance within the cement industry, highlighting the sector’s commitment to growth and environmental responsibility.
As we look forward to the 15th Cement Expo 2025, we invite you to join us for two exciting days of networking, learning, and innovation. This event offers a unique opportunity to be part of the next wave of growth and sustainability in the global cement sector.

Continue Reading

Concrete

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home

Published

on

By

Shares
When it comes to interior design, walls are more than just structural elements—they serve as the canvas for self-expression, setting the mood and personality of a space. While paint and wallpaper have long been the go-to choices for wall finishes, wall putty is emerging as a game-changer in home décor. With its smooth finish, durability, and versatility, wall putty opens a world of creative possibilities. In this article, we explore trendy wall putty designs that can elevate your interiors, turning ordinary walls into extraordinary design statements.
Wall Putty is a Must-Have in Modern Homes
Wall putty is no longer just a preparatory material for painting; it plays a significant role in modern home aesthetics. It enhances the finish of walls, making them smoother, stronger, and resistant to cracks and moisture. Additionally, high-quality putty like Birla White Wall Putty ensures better paint adhesion, resulting in long-lasting vibrancy.
Beyond its functional benefits, wall putty allows homeowners to experiment with textures and patterns, giving walls a designer touch without the hassle of high-maintenance materials like stone or wood. Whether you’re aiming for a minimalist, rustic, or ultra-modern aesthetic, wall putty designs can help achieve the look effortlessly.
Trendy Wall Putty Designs for Stunning Interiors
1. Textured Wall Putty for a Tactile Appeal
Textured walls are a popular interior trend, adding depth and dimension to living spaces. By using wall putty, homeowners can create a variety of textures, including:
  • Rustic Texture: Mimicking natural stone or aged plaster for an earthy, vintage feel.
  • Wave Patterns: Adding a sense of movement and fluidity to walls, perfect for living rooms and entryways.
  • Sand Finish: A subtle grainy effect that provides a sophisticated touch.
Textured putty walls work exceptionally well in accent areas, such as behind a television unit or as a backdrop for artwork.
2. Sleek and Smooth Walls for a Luxurious Look
For those who prefer a refined and elegant aesthetic, a smooth putty finish is ideal. A flawlessly smooth wall creates a premium appearance, amplifying the impact of high-quality paints. Opting for a high-performance putty like Birla White WallCare Putty ensures a glass-like finish that complements modern and contemporary interiors.
This design is perfect for:
  • Monochrome interiors where walls serve as a sleek backdrop.
  • High-gloss or matte-painted walls that need a seamless base.
  • Spaces with minimal décor where the walls themselves make a statement.
3. Geometric & Abstract Patterns for a Contemporary Edge
Wall putty can be artistically applied to create striking geometric or abstract patterns, adding a unique character to interiors.
Popular designs include:
  • Chevron or Herringbone: A dynamic, sophisticated look that pairs well with both modern and mid-century décor.
  • 3D Raised Panels: Using putty to craft subtle raised patterns, adding a sculptural effect to the wall.
  • Asymmetrical Shapes: For a bold and avant-garde touch.
  • These patterns work best in bedrooms, study areas, or accent walls in open spaces.
4. Venetian Plaster for a Luxe European Aesthetic
Venetian plaster, an age-old technique, is making a grand comeback in modern interiors. With wall putty, you can achieve this exquisite marble-like effect, which exudes luxury and timeless charm.
This design works well for:
  • Statement walls in living rooms and foyers.
  • Elegant dining areas where a touch of opulence is desired.
  • Boutique-style bedrooms with a rich, textured finish.
A high-quality white cement-based putty can replicate this effect beautifully, making the walls look naturally luminous.
5. Dual-Tone or Ombre Walls for a Soft Gradient Effect
The ombre effect, a gradient transition between two colors, is a trendy and artistic way to enhance interiors. When applied over a smooth wall putty base, the gradient blends seamlessly, offering a dreamy, watercolor-like appeal.
This style is perfect for:
  • Children’s rooms or play areas, creating a fun and dynamic atmosphere.
  • Bedrooms with a soothing pastel gradient for a calming effect.
  • Dining spaces where a bold color fade adds character.
6. Metallic & Glossy Finishes for a Chic Look
For homeowners who love glamour and sophistication, combining wall putty with metallic paints or glossy finishes can create a high-end appeal. The smooth base of putty enhances the reflective qualities of metallic shades like gold, silver, or bronze, resulting in an opulent and dramatic effect.
Best suited for:
  • Luxurious master bedrooms and dressing areas.
  • Accent walls in dining rooms or home bars.
  • Commercial spaces like boutiques and salons.
How to Achieve the Best Wall Putty Designs
  • Choose the Right Putty: Opt for a premium wall putty like Birla White WallCare Putty to ensure durability, a smooth finish, and long-lasting appeal.
  • Prepare the Surface: Ensure the walls are clean, dry, and free from loose particles before application.
  • Apply in Layers: Depending on the design, putty can be applied in single or multiple layers for the desired effect.
  • Use the Right Tools: Trowels, spatulas, sponges, or patterned rollers help create specific textures and patterns.
  • Seal with Paint or Polish: Once the putty is dry, finishing it with paint, polish, or protective coatings enhances its aesthetic and durability.
Conclusion
Wall putty has evolved beyond its traditional role, now serving as a medium for creative interior design. Whether you prefer textured finishes, sleek smooth walls, or artistic patterns, wall putty designs can elevate your home’s aesthetics while offering durability and elegance. By selecting the  best putty for wall and application technique, you can transform your interior walls into stunning masterpieces, setting the perfect backdrop for your lifestyle.
For high-quality wall finishes that stand the test of time, Birla White WallCare Putty ensures both beauty and performance, making your dream interiors a reality.

Continue Reading

Concrete

Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka

Published

on

By

Shares
  • Investment in alignment with the strategic goal of becoming a PAN India company and achieving 75 MnT capacity by FY28
  • Increases capacity primarily to meet growing demand in Western India along with existing regions

Dalmia Bharat Limited, one of India’s leading cement companies, through its subsidiaries, has announced a strategic investment of approximately Rs 3,520 Crore in the states of Maharashtra and Karnataka. As part of this initiative, the company will establish a 3.6 MnTPA clinker unit and a 3 MnTPA grinding unit at its existing Belgaum plant, Karnataka coupled with a new greenfield split grinding unit with a capacity of 3 MnTPA in Pune, Maharashtra. The capex will be funded through a combination of debt and internal accruals. With this expansion, Dalmia Bharat’s total installed cement capacity will increase to 55.5 MnTPA, after considering the ongoing expansion of 2.9 MnT at Assam and Bihar. These new units are expected to be commissioned by Q4 FY27.

The Belgaum Grinding Unit will cater to the underserved Southern Maharashtra markets while enhancing share in the existing region by improving penetration. On the other hand, Pune Grinding Unit will entirely cater to the untapped Western Maharashtra markets. The initiative is a part of the company’s vision to be a PAN India player and achieve 75 MnTPA capacity by FY28 and 110-130 MnT by 2031.

Speaking on the development, Mr. Puneet Dalmia, Managing Director & CEO, Dalmia Bharat Limited, said, “This investment is a significant step in our Phase II expansion strategy, bringing us closer to strengthen our position as a pan-India player and to reach intermittent goal of 75 MnT capacity by FY28. The increase in our production capacity is primarily to meet the growing infrastructure demand in Western India.” He further added, “We remain committed in realising our goals of capacity expansion, while staying focused on operational excellence and creating long-term value for our stakeholders. The capacity additions will also continue to be in line with Dalmia Bharat’s sustainability-driven approach and its commitment to supporting India’s infrastructure and development goals.”

About Dalmia Bharat: Founded in 1939, Dalmia Bharat Limited (DBL) (BSE/NSE Symbol: DALBHARAT) is one of India’s pioneering cement companies headquartered in New Delhi. With a growing capacity, currently pegged at 46.6 MnT, Dalmia Bharat Limited (including its subsidiaries) is the fourth-largest cement manufacturing company in India by installed capacity. Spread across 10 states and 15 manufacturing units.  Dalmia Cement (Bharat) Limited, a subsidiary of Dalmia Bharat Limited, prides itself at having one of the lowest carbon footprint in the cement world globally. It is the first cement company to commit to RE100, EP100 and EV100 (first triple joiner) – showing real business leadership in the clean energy transition by taking a joined-up approach.

Continue Reading

Trending News

Concrete

Cement-based building materials

Published

on

Shares

Cement is an intermediate product and is always converted into some other form to have a useful end product. The authors-JD Bapat and Kalpana Karthikeyan-take stock of a few new-generation products that are making inroads in the construction industry.

Concrete is a cement-based building material used in construction industry on very large scale. However there are many other cement-based materials used in to improve the economy, conserve materials, energy and to reduce the carbon footprint of construction. This article focuses on the following four cement-based building materials: dry mixed mortar (DMM) plasters, cement-based fly ash bricks, autoclaved aerated concrete (AAC) blocks, and micro-concrete for concrete repair work.

DMM plaster
The cement-based DMM plaster is different from job-site mortar plaster. It is manufactured in a factory with dedicated facilities for batching and blending of all the necessary ingredients in the controlled process. In this way, DMM plaster with well-defined properties and performance to meet specific requirements and applications can be produced.

DMM plaster provides excellent technical properties to meet the stringent performance requirements which are common in the current construction scenario, such as crack free surface, no leaching and aesthetic look. The use of DMM plaster is cost effective, reducing potential construction problems with the long-term integrity of structures with a simple materials approach. The advantages of DMM plaster are wuality controlled and factory blended to maintain consistently high quality, excellent adhesion, no cement and sand storage required at site, reduces wastage, better workability, suitable for wide range of masonry/concrete backgrounds, fibre reinforced for shrinkage crack resistance, aesthetic look due to better finish, and no leaching. Most DMM plasters require only the addition of potable water and mixed with a simple mixer to produce high-quality fresh mortar for wall application. Normal curing process is followed. Most of the high-performance plasters are usually based on extensive development process and tests in order to achieve the desired materials properties. The basic raw materials are: cement, filler and fine aggregate.

The gradation of aggregate and the choice of the filler are critical. Desirable properties of DMM plaster in fresh and hardened state are as follows.

Mixing time: Mixing time of DMM plaster is one of the important parameters to define its ease of application for the mason. Dry mortar powder should quickly mix with water to get the desired workability.

Workability retention (pot Life): Workability retention is the time taken by fresh mortar/concrete to lose its plasticity. Once the mortar is mixed with water it has to maintain its workability till application, for a reasonable period of time: minimum 60 m in peak summer noon and maximum 90 m in the morning/evening or winter season. Workability Retention can be measured from the time of adding water to dry mix till it loses its plasticity i.e. its nature to stick to wall, when mason applies. Loss of workability before application encourages meson to add water to obtain desired workability and such plaster develops cracks after hardening.

Drying time: Plaster should get surface-dried after application, within certain period of time, to start surface finishing and curing. During the process of curing, plaster attains its early strength and binds properly to the substrate (wall/roof top). Addition of polymers can delay surface drying. Polymer mixed DMM may also stick to trowel and the float used for surface finishing, making the whole process difficult and time-consuming

Coverage area: Good coverage area of a plaster offers cost saving to the customer. Coverage area can be measured by calculating the spread area for constant thickness. It depends on the bulk density of plaster. Higher is the density of plaster lower is the spread area. Density of DMM also affects porosity. Optimum bulk density should be obtained balancing the two factors. Typical coverage can be expressed for 10 mm thickness as: m2/kg

Rebound loss: Rebound loss of a plaster shows its capacity to stick to the wall. Lesser is the rebound loss, lesser the wastage of plaster during application. Rebound loss depends on many factors, irrespective of the nature of plaster.

Firstly, it varies from mason to mason. Sometimes the masons’ handling makes difference in the rebound loss.

Second factor is the water content of a plaster mortar. If water is higher than recommended, mortar applied on the wall slides and does not stick properly. If water is lesser than recommended, mortar gets brittle and falls down immediately. Third factor is "saturation of backing surface". Any readymade plaster product should be used only with recommended water content. Water content fixed by manufacturer is enough to prepare a workable mix. It is very important to make backing surface (substrate) wet till it gets saturated and surface dry. When the surface is not saturated, it absorbs water from the plaster and makes it brittle. Similarly, when the surface is over saturated, excess water makes plaster flowing down the wall. The surface of application should be saturated-surface-dry.

Binding property: The binding of DMM to the backing surface (wall with red clay bricks, fly ash bricks or AAC blocks and roof top) must be tested before application.

Compressive strength: No standards specifically mentions about the compressive strength of cement wall plaster. However, experience shows it should have strength of at least 7 MPa at three days.

Cement-based fly ash bricks
The IS 16720: 2018 gives the specification of fly ash-cement bricks. Pulverized fuel ash or fly ash (FA) is a byproduct from thermal power stations, which use pulverised coal as fuel. This national resource can be gainfully utilised for manufacture of FA-cement bricks as an alternative to common burnt clay bricks, leading to conservation of natural resources and improvement in environment quality. The FA-cement bricks are made from materials consisting of FA in major quantity, cement and aggregate. These bricks are manufactured by mixing of all ingredients, which are then moulded into bricks and are de-moulded when sufficiently hardened and then subjected to curing.

FA and cement together should be considered as binder. IS specifies, FA content should not be less than 35%. However, FA could be as high as 65 per cent depending upon quality of both cement and FA. It will be worthwhile to find the strength of FA+ cement mixture, before deciding proportions. Sand or bottom ash from boiler can be used as aggregate. Nominal maximum size of aggregate should be passing 6.3 mm sieve. The typical dimensions of FA-cement bricks are given in Table 1.

The mixing of ingredients should be done in suitable mechanical mixer. The uniformity of mixture should be tested in terms of color and consistency. The mixture thus prepared may be compacted in moulds by hydraulic or vibratory press or hydraulic-cum-vibratory press and finished to proper size without broken edges. After demoulding, the bricks should be protected till they develop sufficient strength, before curing. Curing can be done with water as per IS 456, mist or steam, so as to develop sufficient strength as required by the designated category. Table 2 gives classification of FA-cement bricks on the basis of 28-day wet compressive strength. The average drying shrinkage is limited to 0.05 per cent (max). The water absorption should be below 20 per cent (mass) for Class up to 10 and below 15 per cent (mass) for higher classes. Typical FA-Cement bricks and red clay bricks are shown in Plate 1.

Advantages of FA-cement bricks over conventional red clay bricks:

  • The strength of common red clay bricks lies in the range of 3.5 to 5 MPa; whereas that of FA-Cement bricks goes up to 15 MPa. Strength also increases over a period of time.
  • Lesser water absorption hence requires less water for curing.
  • Uniform dimensions and more dimensional stability.
  • Lesser transit waste.

AAC blocks
They are also known as cellular blocks. Specification is given in IS 2185 (Part 3). Autoclaved aerated concrete (AAC) is a versatile lightweight construction material and usually used as blocks. Compared to normal dense concrete, AAC has low density and excellent sound and heat insulation properties. The density of AAC is in the range of 450-1000 Kg/m3 as against 2300-2500 Kg/m3 for that of the dense concrete. Plate ? 2 shows typical AAC blocks. The common raw materials used while making AAC are given in the Table – 3

The above proportions may vary subject to different plant practices and requirement of AAC. Quartz-rich sand and gypsum is also be used in the raw mix. Aluminium is added as a pore forming agent. Instead, suitable foaming agent can also be added; however, that method is out of the scope of the present paper. The aluminium reacts with soluble alkalies from cement and calcium hydroxide to form hydrogen bubbles according to chemical reaction: Al + 2OH- + 2H2O ? Al(OH)4- + H2 Hydrogen bubbles formed in reaction are responsible for the pore formation in AAC blocks. The raw mix is poured in the moulds, after mixing. The mixture rises in the moulds after formation of bubbles. It is cured at ambient temperature for about 45 minutes and cut into block pieces of required unit size, with wires. The blocks are further cured in the autoclave with high pressure steam, which also improves their compressive strength. Typical conditions in the curing chamber are steam pressure of 4-16 MPa and curing duration of 8-16 hours.

AAC blocks contain more than 80 per cent air by volume and its mass is about one-fourth of the red clay bricks, making it the lightest building material. The comparison of AAC blocks and burnt (red) clay bricks is given in Table 4.

Micro-concrete for concrete repair work
Micro concrete is a proportionate mixture of Portland cement, graded aggregate of 10 mm down size or 6 mm down size. Micro-concrete also has a non-shrink additive in the mix to limit the plastic shrinkage up to 0.4 per cent.

It is generally used in sections which are inaccessible and where there is thick reinforcement. Generally, micro-concreting is done as a repair job in structures. The distressed concrete section or spalled concrete is removed and after application of suitable bonding agent over the existing surface, micro-concrete is poured or applied. Micro-concrete is dimensionally stable and compatible to the existing structural material and section. It is to be noted that shuttering to be done leak proof while micro-concreting and proper curing methods to be followed since the heat of hydration of micro-concrete is higher than normal concrete mixes. Micro-concrete is useful for the following areas of application:

Repair of damaged reinforced concrete elements, like slabs, beams, columns, wall, etc., where access is restricted and compaction is not possible.

To jacket RCC columns, to increase load-bearing capacity (Plate – 3)

The general features and advantages of micro-concrete are as follows.

  • Can be pumped or poured into restricted locations
  • Flowable mortar, hence does not require compaction
  • Develops high initial and ultimate final strength
  • Offers excellent resistance to moisture ingress
  • Makes repaired sections durable
  • Rapid strength gain to facilitate early reinstatement

Free-flowing micro-concrete has been found to be more effective in comparison with conventional OPC concrete. When conventional mix of high strength concrete is used for repair, small gaps may remain around the reinforcement steel either due to poor compaction or settlement, providing a potential site to initiate corrosion. Free-flowing micro-concrete eliminates that problem. The mix proportion of micro-concrete for a typical strength range of 30-50 MPa is given in Table 5.

Note: Fine, sharp washed sand from zone III to IV, as per IS 383 – 2016 May also contain a non-shrink additive to limit plastic shrinkage < 0.4%

ABOUT THE AUTHORS:
Dr J D Bapat is with the Development Professional for Cement and Concrete. Email Email: consult@drjdbapat.com | Web: www.drjdbapat.com
Kalpana Karthikeyan is R&D Manager, Sanghavi Industries

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Driving Sustainability Through Innovation

Published

on

By

Shares

The 15th Cement Expo 2025 will spotlight India’s cement industry’s growth, innovation, and sustainability, showcasing cutting-edge solutions for a greener future.

The cement industry in India, the second-largest in the world, is on the cusp of remarkable growth as it continues its transition toward sustainability, innovation, and expansion. The 15th Cement Expo 2025, scheduled for November 12-13, 2025, at the Yashobhoomi Convention Centre in Delhi, will be the premier event where the industry’s foremost stakeholders converge to explore state-of-the-art technologies and solutions.
Co-located with the 11th Indian Cement Review Conference and the 9th Indian Cement Review Awards, the expo promises to be a pivotal event for professionals in the cement, construction, and infrastructure sectors. This year’s theme, “Driving Sustainability Through Technology,” highlights the sector’s commitment to decarbonisation, efficiency, and technological advancement. With India poised to add 80 to 100 million tonnes of cement capacity by 2024-25, the event will address the urgent need for sustainable, low-carbon solutions to meet the growing demand.
Before we look ahead to the 15th Cement Expo, let’s reflect on the remarkable success of the Cement Expo Forum 2025, held on March 5-6, 2025, in Hyderabad. The event attracted over 500 industry professionals and featured groundbreaking discussions on sustainability, logistics, and decarbonisation. Key sponsors and partners, such as ABB, Gebr Pfeiffer, JK Cement, and Flender Drives, showcased their latest innovations, contributing to the forum’s success.
Pratap Padode, Founder and President of First Construction Council, spoke at the event, noting, “The PPP pipeline is complemented by a provision of Rs 1.5 trillion in interest-free loans to states, earmarked for capital expenditure. With this, we have a solid plan in place. What needs to be done is to ensure that the PPP actually takes off as envisaged. To make this happen, trust must be established, and policies must be investor-friendly. Telangana, in this regard, has demonstrated ease of doing business exceptionally well.”
He added, “These financial injections into the infrastructure sector are expected to create a ripple effect, driving demand for cement as a key material in construction and development projects. The growing demand for cement is evident as infrastructure projects continue to rise across the country.”
The forum also provided invaluable networking opportunities, with attendees gaining insights from over 35 distinguished speakers and connecting with more than 50 exhibitors. The event laid a strong foundation for the upcoming Expo, showcasing the significant strides the cement industry is making toward a greener, more efficient future.
The 15th Cement Expo 2025 will focus on advancing the industry’s next big step toward sustainable growth. With India’s cement sector making significant progress in decarbonisation, a key focus will be on technologies and innovations that support carbon capture, low-carbon cement production, and energy-efficient solutions.
The expo will feature over 50 exhibitors representing all aspects of the cement industry. Whether you are a manufacturer, raw material supplier, technology provider, or logistics partner, the Cement Expo 2025 offers an ideal platform to showcase your products and solutions. Attendees will have the opportunity to explore the latest advancements in cement production technology, automation, logistics, and environmental solutions, all geared toward building a greener and more sustainable future.
Exhibitor profiles will include cement manufacturers, raw material suppliers, technology and automation solutions providers, environmental and sustainability solutions providers, cement packaging and logistics, construction equipment manufacturers, admixtures and chemical suppliers, and concrete reinforcement and structural systems.

11th Indian Cement Review Conference

Held alongside the Expo, the 11th Indian Cement Review Conference will offer delegates invaluable insights into the latest trends and innovations shaping the cement industry. Focusing on sustainability, the conference will address critical issues such as energy efficiency, plant design, and emerging technologies like carbon capture and automation.
Industry leaders will share their expertise in technical forums, while specialised activities, such as plant tours and energy audits, will provide practical guidance on improving operations and efficiency. This is a prime opportunity to network with industry stakeholders, gain hands-on experience with new technologies, and acquire actionable knowledge to enhance your business.

9th Indian Cement Review Awards

The 9th Indian Cement Review Awards will recognise the fastest-growing cement companies and industry leaders for their outstanding contributions to the sector. This prestigious event will serve as a platform to honour the pioneers of innovation, sustainability, and performance within the cement industry, highlighting the sector’s commitment to growth and environmental responsibility.
As we look forward to the 15th Cement Expo 2025, we invite you to join us for two exciting days of networking, learning, and innovation. This event offers a unique opportunity to be part of the next wave of growth and sustainability in the global cement sector.

Continue Reading

Concrete

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home

Published

on

By

Shares

When it comes to interior design, walls are more than just structural elements—they serve as the canvas for self-expression, setting the mood and personality of a space. While paint and wallpaper have long been the go-to choices for wall finishes, wall putty is emerging as a game-changer in home décor. With its smooth finish, durability, and versatility, wall putty opens a world of creative possibilities. In this article, we explore trendy wall putty designs that can elevate your interiors, turning ordinary walls into extraordinary design statements.
Wall Putty is a Must-Have in Modern Homes
Wall putty is no longer just a preparatory material for painting; it plays a significant role in modern home aesthetics. It enhances the finish of walls, making them smoother, stronger, and resistant to cracks and moisture. Additionally, high-quality putty like Birla White Wall Putty ensures better paint adhesion, resulting in long-lasting vibrancy.
Beyond its functional benefits, wall putty allows homeowners to experiment with textures and patterns, giving walls a designer touch without the hassle of high-maintenance materials like stone or wood. Whether you’re aiming for a minimalist, rustic, or ultra-modern aesthetic, wall putty designs can help achieve the look effortlessly.
Trendy Wall Putty Designs for Stunning Interiors
1. Textured Wall Putty for a Tactile Appeal
Textured walls are a popular interior trend, adding depth and dimension to living spaces. By using wall putty, homeowners can create a variety of textures, including:
  • Rustic Texture: Mimicking natural stone or aged plaster for an earthy, vintage feel.
  • Wave Patterns: Adding a sense of movement and fluidity to walls, perfect for living rooms and entryways.
  • Sand Finish: A subtle grainy effect that provides a sophisticated touch.
Textured putty walls work exceptionally well in accent areas, such as behind a television unit or as a backdrop for artwork.
2. Sleek and Smooth Walls for a Luxurious Look
For those who prefer a refined and elegant aesthetic, a smooth putty finish is ideal. A flawlessly smooth wall creates a premium appearance, amplifying the impact of high-quality paints. Opting for a high-performance putty like Birla White WallCare Putty ensures a glass-like finish that complements modern and contemporary interiors.
This design is perfect for:
  • Monochrome interiors where walls serve as a sleek backdrop.
  • High-gloss or matte-painted walls that need a seamless base.
  • Spaces with minimal décor where the walls themselves make a statement.
3. Geometric & Abstract Patterns for a Contemporary Edge
Wall putty can be artistically applied to create striking geometric or abstract patterns, adding a unique character to interiors.
Popular designs include:
  • Chevron or Herringbone: A dynamic, sophisticated look that pairs well with both modern and mid-century décor.
  • 3D Raised Panels: Using putty to craft subtle raised patterns, adding a sculptural effect to the wall.
  • Asymmetrical Shapes: For a bold and avant-garde touch.
  • These patterns work best in bedrooms, study areas, or accent walls in open spaces.
4. Venetian Plaster for a Luxe European Aesthetic
Venetian plaster, an age-old technique, is making a grand comeback in modern interiors. With wall putty, you can achieve this exquisite marble-like effect, which exudes luxury and timeless charm.
This design works well for:
  • Statement walls in living rooms and foyers.
  • Elegant dining areas where a touch of opulence is desired.
  • Boutique-style bedrooms with a rich, textured finish.
A high-quality white cement-based putty can replicate this effect beautifully, making the walls look naturally luminous.
5. Dual-Tone or Ombre Walls for a Soft Gradient Effect
The ombre effect, a gradient transition between two colors, is a trendy and artistic way to enhance interiors. When applied over a smooth wall putty base, the gradient blends seamlessly, offering a dreamy, watercolor-like appeal.
This style is perfect for:
  • Children’s rooms or play areas, creating a fun and dynamic atmosphere.
  • Bedrooms with a soothing pastel gradient for a calming effect.
  • Dining spaces where a bold color fade adds character.
6. Metallic & Glossy Finishes for a Chic Look
For homeowners who love glamour and sophistication, combining wall putty with metallic paints or glossy finishes can create a high-end appeal. The smooth base of putty enhances the reflective qualities of metallic shades like gold, silver, or bronze, resulting in an opulent and dramatic effect.
Best suited for:
  • Luxurious master bedrooms and dressing areas.
  • Accent walls in dining rooms or home bars.
  • Commercial spaces like boutiques and salons.
How to Achieve the Best Wall Putty Designs
  • Choose the Right Putty: Opt for a premium wall putty like Birla White WallCare Putty to ensure durability, a smooth finish, and long-lasting appeal.
  • Prepare the Surface: Ensure the walls are clean, dry, and free from loose particles before application.
  • Apply in Layers: Depending on the design, putty can be applied in single or multiple layers for the desired effect.
  • Use the Right Tools: Trowels, spatulas, sponges, or patterned rollers help create specific textures and patterns.
  • Seal with Paint or Polish: Once the putty is dry, finishing it with paint, polish, or protective coatings enhances its aesthetic and durability.
Conclusion
Wall putty has evolved beyond its traditional role, now serving as a medium for creative interior design. Whether you prefer textured finishes, sleek smooth walls, or artistic patterns, wall putty designs can elevate your home’s aesthetics while offering durability and elegance. By selecting the  best putty for wall and application technique, you can transform your interior walls into stunning masterpieces, setting the perfect backdrop for your lifestyle.
For high-quality wall finishes that stand the test of time, Birla White WallCare Putty ensures both beauty and performance, making your dream interiors a reality.

Continue Reading

Concrete

Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka

Published

on

By

Shares

  • Investment in alignment with the strategic goal of becoming a PAN India company and achieving 75 MnT capacity by FY28
  • Increases capacity primarily to meet growing demand in Western India along with existing regions

Dalmia Bharat Limited, one of India’s leading cement companies, through its subsidiaries, has announced a strategic investment of approximately Rs 3,520 Crore in the states of Maharashtra and Karnataka. As part of this initiative, the company will establish a 3.6 MnTPA clinker unit and a 3 MnTPA grinding unit at its existing Belgaum plant, Karnataka coupled with a new greenfield split grinding unit with a capacity of 3 MnTPA in Pune, Maharashtra. The capex will be funded through a combination of debt and internal accruals. With this expansion, Dalmia Bharat’s total installed cement capacity will increase to 55.5 MnTPA, after considering the ongoing expansion of 2.9 MnT at Assam and Bihar. These new units are expected to be commissioned by Q4 FY27.

The Belgaum Grinding Unit will cater to the underserved Southern Maharashtra markets while enhancing share in the existing region by improving penetration. On the other hand, Pune Grinding Unit will entirely cater to the untapped Western Maharashtra markets. The initiative is a part of the company’s vision to be a PAN India player and achieve 75 MnTPA capacity by FY28 and 110-130 MnT by 2031.

Speaking on the development, Mr. Puneet Dalmia, Managing Director & CEO, Dalmia Bharat Limited, said, “This investment is a significant step in our Phase II expansion strategy, bringing us closer to strengthen our position as a pan-India player and to reach intermittent goal of 75 MnT capacity by FY28. The increase in our production capacity is primarily to meet the growing infrastructure demand in Western India.” He further added, “We remain committed in realising our goals of capacity expansion, while staying focused on operational excellence and creating long-term value for our stakeholders. The capacity additions will also continue to be in line with Dalmia Bharat’s sustainability-driven approach and its commitment to supporting India’s infrastructure and development goals.”

About Dalmia Bharat: Founded in 1939, Dalmia Bharat Limited (DBL) (BSE/NSE Symbol: DALBHARAT) is one of India’s pioneering cement companies headquartered in New Delhi. With a growing capacity, currently pegged at 46.6 MnT, Dalmia Bharat Limited (including its subsidiaries) is the fourth-largest cement manufacturing company in India by installed capacity. Spread across 10 states and 15 manufacturing units.  Dalmia Cement (Bharat) Limited, a subsidiary of Dalmia Bharat Limited, prides itself at having one of the lowest carbon footprint in the cement world globally. It is the first cement company to commit to RE100, EP100 and EV100 (first triple joiner) – showing real business leadership in the clean energy transition by taking a joined-up approach.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds