Economy & Market
The core sector in focus: Mean reversion
Published
5 years agoon
By
admin
Among the core sector, cement index showed the maximum rebound, from a sharp drop of 85.3 per cent in April 2020 (virtually the entire month the production stopped), May rebounded to 21.4 (negative) and June came back to 6.9 per cent (negative).
Indian economy has shown striking resilience to revert to the mean, although it is early days to make any long term projection. But in the short term, the months of May, June and July have shown results that demonstrate the ability to make an economic recovery despite the headwinds that stem from the propagation of the Coronavirus in almost all corners of India.
It would be prudent to first see the state of the core sector. Monthly Core sector Index (which tracks monthly growth) has moved positively starting from a contraction of 37 per cent in April 2020, to 22 per cent in May and 15 per cent in June. So as we read June numbers it is in fact a recovery of 22 per cent over the steep drop in April, when the core sector Index fell to the crevice in absence of working days for production or sales.
Among the core sector, cement index showed the maximum rebound, from a sharp drop of 85.3 per cent in April 2020 (virtually the entire month the production stopped), May rebounded to 21.4 (negative) and June came back to 6.9 per cent (negative). Negative 6.9 per cent compares with negative 1.9 per cent in June 2019. Among the core sectors, only fertilizer (+4.2 per cent) and crude oil (-6 per cent) has fared better for the month of June.
To see some of the complementary sectors, coal, steel and electricity show some very mixed results. Coal is showing a very steady negative growth hovering around 15 per cent throughout these three months, while steel made a recovery from a steep fall of contraction of 78.7 per cent in April to negative 33.8 per cent in June. Electricity seems to be mode steady in its modest recovery from a contraction of 23 per cent in April to 11 per cent in June.
Core sector production growth has several components to be looked at, including other drivers for example in fertilizer, which due to the onset of the Kharif season coupled with higher distribution with easing of lockdown measures have aided output.
The Oil and natural gas sector have many other issues to contend with like ageing of assets, high prices of end use fuel dampening demand or the structural factors in Natural Gas, where the contraction is a 15 month consecutive phenomenon due to restricted gas off-take by consumers.
Minus the coronavirus, the core sector was showing an upward trend till march, barring a few, although the trend showed dampening due to some structural factors, some of which are related to also demand side of the story.
To project anything forward from this June series would be fraught with risks as we now move to the monsoon season and some sectors will have natural dampening of demand thus taming output, while the virus moves to an unknown trajectory. Some risks are multiplicative, while some are additive, how the economy wades through it will depend on how the economy tackles the virus as part of the economic rebound, not treating it as an exclusion (the treatment cannot be either or).
Construction and infrastructure hold the center piece of the discourse on core sector and this would mean solving the supply side, where labor remains the biggest influence for things to take shape. But actually the solution seems plausible that if those who could be vulnerable to contracting could be segregated and the rest could insulate themselves with a mandatory mask and strict regimen, the activities actually could be brought back to normal, albeit at a slightly reduced level. If the former, segregation through contact tracing and testing, is not well orchestrated among the various constituencies, while the latter, those who should protect themselves do not follow the rules, the combined result will continue to lead to the current trajectory of the virus.
The core sector also must have the solutions to the migrant labor problem, where the activities must reach a threshold to create the reverse movement of skilled labor in larger numbers. This remains a crucial result to watch, could the core sector create its own solutions, this is where some are doing better than the others, which includes solutions for distribution and logistics as well.
ABOUT THE AUTHOR:
Procyon Mukherjee works as Chief Procurement Officer at LafargeHolcim India. The ideas presented are his personal and have no connection to the beliefs of the company where he works.
You may like
Economy & Market
Jayesh Ranjan & Cement Expo Forum Leaders converge in Hyderabad
Published
1 week agoon
February 28, 2025By
admin
February 28, 2025, Mumbai
Fireside chat to discuss infra growth story
Creating new business possibilities
Economy & Market
Walplast Expands HomeSure MasterTouch Line
It is a high-quality yet affordable wall paint
Published
4 weeks agoon
February 13, 2025By
admin
Walplast Products, a leading manufacturer of building and construction materials, has unveiled the expansion of its esteemed HomeSure MasterTouch portfolio with the launch of the new HomeSure MasterTouch Lush (Interior & Exterior Emulsion) and HomeSure MasterTouch Prime (Interior & Exterior Primer). These new offerings are strategically positioned as high-quality, yet affordable, high-performance solutions designed to enable individuals to achieve their dream of beautiful homes and “Elevating Lifestyles” (Raho Shaan Se).
The HomeSure MasterTouch Lush Interior Emulsion is a high-quality yet affordable wall paint that delivers best-in-class coverage and an aesthetically appealing, durable finish. Formulated with premium pigments and acrylic binders, it ensures excellent coverage, colour retention, and resistance to fungus, making it an ideal choice for homeowners seeking durability and value. Meanwhile, the HomeSure MasterTouch Lush Exterior Emulsion is specifically engineered to withstand varying weather conditions, particularly in regions with frequent rain and moderate humidity. With strong adhesion and UV-resistant properties, it protects exterior walls against algae growth and black spots while maintaining an elegant matte appearance.
Adding to its comprehensive range, Walplast introduces the HomeSure MasterTouch Prime Interior and Exterior Primers, offering superior adhesion, excellent whiteness, and long-lasting durability. These primers enhance the topcoat application, ensuring a flawless, smooth finish for both interior and exterior surfaces. Engineered with excellent workability and eco-friendly attributes, the primers are free from heavy metals, low VOC (Volatile Organic Compounds), and protect against algae and fungus, making them a reliable base for any painting project.
“At Walplast, we are committed to providing innovative and accessible solutions that enhance the beauty and longevity of homes. The HomeSure MasterTouch range is designed with the modern homeowner in mind—delivering affordability without compromising on quality. Our focus is to empower individuals to bring their dream homes to life with reliable and superior products,” said Kaushal Mehta, Managing Director of Walplast.
Aniruddha Sinha, Senior Vice President Marketing, CSR, and Business Head – P2P Division, Walplast added, “The HomeSure MasterTouch Lush and Prime range align with our vision of offering peace of mind to customers with durable, aesthetic, and affordable solutions for every home. The “Elevate your lifestyle” reflects our belief that everyone deserves to live in a home they take pride in. With this launch, we continue our mission of enabling dreams of beautiful homes for all.”
The newly launched products will be available across key markets, including Maharashtra, Rajasthan, Gujarat, Uttar Pradesh, Madhya Pradesh, Jharkhand, and Chhattisgarh. The HomeSure MasterTouch portfolio also includes premium emulsions such as Bloom and Vivid, as well as a premium primer, catering to diverse customer needs in the construction and home improvement sectors.
Walplast’s HomeSure portfolio encompasses a comprehensive range of construction solutions, including Wall Putty, Tile Adhesives, Gypsum-based products, Construction Chemicals, AAC blocks, and more. With a robust network of over 800 active distributors, 6000 dealers, and more than 65,000 influencers, the HomeSure division continues to be the preferred choice in the construction ecosystem, reinforcing Walplast’s position as an industry leader.

Carbon Capture, Utilisation, and Storage (CCUS) is crucial for reducing emissions in the cement industry. Kanika Mathur explores how despite the challenges such as high costs and infrastructure limitations, CCUS offers a promising pathway to achieve net-zero emissions and supports the industry’s sustainability goals.
The cement industry is one of the largest contributors to global CO2 emissions, accounting for approximately seven to eight per cent of total anthropogenic carbon dioxide released into the atmosphere. As the world moves towards stringent decarbonisation goals, the cement sector faces mounting pressure to adopt sustainable solutions that minimise its carbon footprint. Among the various strategies being explored, Carbon Capture, Utilisation, and Storage (CCUS) has emerged as one of the most promising approaches to mitigating emissions while maintaining production efficiency. This article delves into the challenges, opportunities, and strategic considerations surrounding CCUS
in the cement industry and its role in achieving net-zero emissions.
Understanding CCUS and Its Relevance to Cement Manufacturing
Carbon Capture, Utilisation, and Storage (CCUS) is an advanced technological process designed to capture carbon dioxide emissions from industrial sources before they are released into the atmosphere. The captured CO2 can then be either utilised in various applications or permanently stored underground to prevent its contribution to climate change.
Rajesh Kumar Nayma, Associate General Manager – Environment and Sustainability, Wonder Cement says, “CCUS is indispensable for achieving Net Zero emissions in the cement industry. Even with 100 per cent electrification of kilns and renewable energy utilisation, CO2 emissions from limestone calcination—a key raw material—remain unavoidable. The cement industry is a major contributor to
GHG emissions, making CCUS critical for sustainability. Integrating CCUS into plant operations ensures significant reductions in carbon emissions, supporting the industry’s Net Zero goals. This transformative technology will also play a vital role in combating climate change and aligning with global sustainability standards.”
The relevance of CCUS in cement manufacturing stems from the inherent emissions produced during the calcination of limestone, a process that accounts for nearly 60 per cent of total CO2 emissions in cement plants. Unlike other industries where CO2 emissions result primarily from fuel combustion, cement production generates a significant portion of its emissions as an unavoidable byproduct. This makes CCUS a particularly attractive solution for the sector, as it offers a pathway to drastically cut emissions without requiring a complete overhaul of existing production processes.
According to a Niti Ayog report from 2022, the adverse climatic effects of a rise in GHG emissions and global temperatures rises are well established and proven, and India too has not been spared from adverse climatic events. As a signatory of the Paris Agreement 2015, India has committed to reducing emissions by 50 per cent by the year 2050 and reaching net zero by 2070. Given the sectoral composition and sources of CO2 emissions in India, CCUS will have an important and integral role to play in ensuring India meets its stated climate goals, through the deep decarbonisation of energy and CO2 emission intensive industries such as thermal power generation, steel, cement, oil & gas refining, and petrochemicals. CCUS can enable the production of clean products while utilising our rich endowments of coal, reducing imports and thus leading to an Indian economy. CCUS also has an important role to play in enabling sunrise sectors such as coal gasification and the nascent hydrogen economy in India.
The report also states that India’s current cement production capacity is about 550 mtpa, implying capacity utilisation of about 50 per cent only. While India accounts for 8 per cent of global cement capacity, India’s per capita cement consumption is only 235 kg, and significantly low compared to the world average of 500 kg per capita, and China’s per capita consumption of around 1700 kg per capita. It is expected that domestic demand, capacity utilisation and per capita cement consumption will increase in the next decade, driven by robust demand from rapid industrialisation and urbanisation, as well as the Central Government’s continued focus on highway expansions, investment in smart cities, Pradhan Mantri Awas Yojana (PMAY), as well as several state-level schemes.
Key Challenges in Integrating CCUS in Cement Plants Spatial Constraints and Infrastructure Limitations
One of the biggest challenges in integrating CCUS into existing cement manufacturing facilities is space availability. Most cement plants were designed decades ago without any consideration for carbon capture systems, making retrofitting a complex and costly endeavour. Many facilities are already operating at full capacity with limited available space, and incorporating additional carbon capture equipment requires significant modifications.
“The biggest challenge we come across repeatedly is that most cement manufacturing facilities were built decades ago without any consideration for carbon capture systems. Consequently, one of the primary hurdles is the spatial constraints at these sites. Cement plants often have limited space, and retrofitting them to integrate carbon capture systems can be very challenging. Beyond spatial issues, there are additional considerations such as access and infrastructure modifications, which further complicate the integration process. Spatial constraints, however, remain at the forefront of the challenges we encounter” says Nathan Ashcroft, Carbon Director, Stantec.
High Capital and Operational Costs CCUS technologies are still in the early stages of large-scale deployment, and the costs associated with implementation remain a significant barrier. Capturing, transporting, and storing CO2 requires substantial capital investment and increases operational expenses. Many cement manufacturers, especially in developing economies, struggle to justify these costs without clear financial incentives or government support.
Regulatory and Policy Hurdles The regulatory landscape for CCUS varies from region to region, and in many cases, clear guidelines and incentives for deployment are lacking. Establishing a robust framework for CO2 storage and transport infrastructure is crucial for widespread CCUS adoption, but many countries are still in the process of developing these policies.
Waste Heat Recovery and Energy Optimisation in CCUS Implementation
CCUS technologies require significant energy inputs, primarily for CO2 capture and compression. One way to offset these energy demands is through the integration of waste heat recovery (WHR) systems. Cement plants operate at high temperatures, and excess heat can be captured and converted into usable energy, thereby reducing the additional power required for CCUS. By effectively utilizing waste heat, cement manufacturers can lower the overall cost of carbon capture and improve the economic feasibility of CCUS projects.
Another critical factor in optimising CCUS efficiency is pre-treatment of flue gases. Before CO2 can be captured, flue gas streams must be purified and cleaned to remove particulates and impurities. This additional processing can lead to better capture efficiency and lower operational costs, ensuring that cement plants can maximise the benefits of CCUS.
Opportunities for Utilising Captured CO2 in the Cement Sector
While storage remains the most common method of handling captured CO2, the utilising aspect presents an exciting opportunity for the cement industry. Some of the most promising applications include:
Carbonation in Concrete Production
CO2 can be injected into fresh concrete during mixing, where it reacts with calcium compounds to form solid carbonates. This process not only locks away CO2 permanently but also enhances the compressive strength of concrete, reducing the need for additional cement.
Enhanced Oil Recovery (EOR) and Industrial Applications
Captured CO2 can be used in enhanced oil recovery (EOR), where it is injected into underground oil reservoirs to improve extraction efficiency. Additionally, certain industrial processes, such as urea production and synthetic fuel manufacturing, can use CO2 as a raw material, creating economic opportunities for cement producers.
Developing Industrial Hubs for CO2 Utilisation
By co-locating cement plants with other industrial facilities that require CO2, manufacturers can create synergies that make CCUS more economically viable. Industrial hubs that facilitate CO2 trading and re-use across multiple sectors can help cement producers monetise their captured carbon, improving the financial feasibility of CCUS projects.
Strategic Considerations for Large-Scale CCUS Adoption Early-Stage Planning and Feasibility Assessments
Cement manufacturers looking to integrate CCUS should begin with comprehensive feasibility studies to assess site-specific constraints, potential CO2 storage locations, and infrastructure requirements. A phased implementation strategy, starting with pilot projects before full-scale deployment, can help mitigate risks and optimise
system performance.
Neelam Pandey Pathak, Founder and CEO, Social Bay Consulting and Rozgar Dhaba says, “Carbon Capture, Utilisation and Storage (CCUS) has emerged as a transformative technology that holds the potential to revolutionise cement manufacturing by addressing its carbon footprint while supporting global sustainability goals. CCUS has the potential to be a game-changer for the cement industry, which accounts for about seven to eight per cent of global CO2 emissions. It addresses one of the sector’s most significant challenges—emissions from clinker production. By capturing CO2 at the source and either storing it or repurposing it into value-added products, CCUS not only reduces
the carbon footprint but also creates new economic opportunities.”
Government Incentives and Policy Support
For CCUS to achieve widespread adoption, governments must play a crucial role in providing financial incentives, tax credits, and regulatory frameworks that support carbon capture initiatives. Policies such as carbon pricing, emission reduction credits, and direct subsidies for CCUS infrastructure can make these projects more economically viable for cement manufacturers.
Neeti Mahajan, Consultant, E&Y India says, “With new regulatory requirements coming in, like SEBI’s Business Responsibility and Sustainability Reporting for the top 1000 listed companies, value chain disclosures for the top 250 listed companies, and global frameworks to reduce emissions from the cement industry – this can send stakeholders into a state of uncertainty and unnecessary panic leading to a semi-market disruption. To avoid this, communication on technologies like carbon capture utilisation and storage (CCUS), and other innovative tech technologies which will pave the way for the cement industry, is essential. Annual reports, sustainability reports, the BRSR disclosure, and other broad forms of communication in the public domain, apart from continuous stakeholder engagement internally to a company, can go a long way in redefining a rather traditional industry.”
The Role of Global Collaborations in Scaling CCUS
International collaborations will be essential in driving CCUS adoption at scale. Countries that have made significant progress in CCUS, such as Canada, Norway, and the U.S., offer valuable insights and technological expertise that can benefit emerging markets. Establishing partnerships between governments, industry players, and research institutions can help accelerate technological advancements and facilitate knowledge transfer.
Raj Bagri, CEO, Kapture, says “The cement industry can leverage CCUS to capture process and fuel emissions and by using byproducts to replace existing carbon intensive products like aggregate filler or Portland Cement.”
Organisations like the Carbon Capture Knowledge Centre in Saskatchewan provide training programs and workshops that can assist cement manufacturers in understanding CCUS implementation. Additionally, global symposiums and industry conferences provide platforms for stakeholders to exchange ideas and explore collaborative opportunities.
According to a Statista report from September 2024, Carbon capture and storage (CCS) is seen by many experts as a vital tool in combating climate change. CCS technologies are considered especially important for hard-to-abate industries that cannot be easily replaced by electrification, such as oil and gas, iron and steel, and cement and refining. However, CCS is still very much in its infancy, capturing just 0.1 per cent of global CO2 emissions per year. The industry now faces enormous challenges to reach the one billion metric tons needing to be captured and stored by 2030 and live up to the hype.
The capture capacity of operational CCS facilities worldwide increased from 28 MtCO2 per year in 2014 to around 50 MtCO2 in 2024. Meanwhile, the capacity of CCS facilities under development or in construction has risen to more than 300 MtCO2 per year. As of 2024, the United States had the largest number of CCS projects in the pipeline, by far, with 231 across various stages of development, 17 of which were operational. The recent expansion of CCS has been driven by developments in global policies and regulations – notably the U.S.’ Inflation Reduction Act (IRA) – that have made the technology more attractive to investors. This has seen global investment in CCS more than quadruple since 2020, to roughly $ 11 billion in 2023.
The Future of CCUS in the Cement Industry
As technology advances and costs continue to decline, CCUS is expected to play a crucial role in the cement industry’s decarbonisation efforts. Innovations such as cryogenic carbon capture and direct air capture (DAC) are emerging as promising alternatives to traditional amine-based systems. These advancements could further enhance the feasibility and efficiency of CCUS in cement manufacturing.
In conclusion, while challenges remain, the integration of CCUS in the cement industry is no longer a question of “if” but “when.” With the right mix of technological innovation, strategic planning, and policy support, CCUS can help the cement sector achieve net zero emissions while maintaining its role as a vital component of global infrastructure development.

UltraTech Cement Ventures into Wires and Cables with Rs 18 Bn Plan

Star Cement to Invest Rs 32 Bn in Assam for New Clinker Plant

Jayesh Ranjan & Cement Expo Forum Leaders converge in Hyderabad

World’s First Book on Carbon Steel Sourcing Launched by Hero Steels CEO

Viva ACP Unveils Bricklyn: A Fusion of Tradition and Innovation

UltraTech Cement Ventures into Wires and Cables with Rs 18 Bn Plan

Star Cement to Invest Rs 32 Bn in Assam for New Clinker Plant

Jayesh Ranjan & Cement Expo Forum Leaders converge in Hyderabad

World’s First Book on Carbon Steel Sourcing Launched by Hero Steels CEO

Viva ACP Unveils Bricklyn: A Fusion of Tradition and Innovation
Trending News
-
Concrete1 month ago
Bangur Cement Launches Premium Product for Solid Bright Homes
-
Concrete4 weeks ago
UltraTech Expands Cement Capacity in West Bengal
-
Uncategorized4 weeks ago
Baldota Group to Set Up Rs 540 Billion Steel Plant in Koppal
-
Economy & Market1 week ago
Jayesh Ranjan & Cement Expo Forum Leaders converge in Hyderabad