Connect with us

Environment

CSR initiative for truck drivers

Published

on

Shares

Road transport has a sizable share in the logistics chain of cement business. The vital and important link of road transport is vehicle drivers. The author takes a close look considering the sustainability of the chain and how CSR can bring in meaningful change.

Today, the entire world is in the grips of an unprecedented crisis of a magnitude which no one had anticipated – the Covid-19 pandemic. This has shaken the fabric of the global society, which was already facing innumerable challenges. Amongst them, in the Indian context, is the issue concerning the well-being and training of our business partners in the road transport industry – the community of truck drivers who are a vital part of our supply chain to keep our economy rolling.

The fates of our business and the road transport industry are closely interdependent, with healthy growth of the cement industry directly correlated with the growth of the road transportation infrastructure. And the backbone of this infrastructure are the millions of truck drivers who on a daily basis move the manufactured produce from one end of the supply chain to the other. Corporates can benefit themselves only by benefiting society, which also includes the large truckers’ community.

Background – Importance of road transport in India
Road transport is considered to be the most cost effective and preferred transportation mode for freight, keeping in view its level of penetration into populated areas, easy availability, adaptability to individual needs and cost savings. No wonder that road transport has emerged as the dominant segment in India’s transportation sector and accounts for about 60 percent of freight traffic movement in the country. Road transport also acts as a secondary feeder service to goods transported by railways.

For cement, too, the major transport mode is road, accounting for almost 65 percent of total outbound cement despatches, and around 20 million tonnes of cement is transported by road every month through an estimated 2.5 lakh trucks. In addition, an equivalent number of trucks and bulkers are deployed to move the inbound raw materials like coal, flyash and gypsum to the manufacturing plants. Transit mixers for RMC further add to the total number of vehicles engaged in the cement industry.

At 5.9 million km, India has the second largest road network in the world (next to USA’s 6.9 million km) and the Ministry of Road Transport and Highways (MoRTH) is planning to add 60,000 km of roads over the next five years. Under the Make in India program of the Government of India launched in 2014, Roads and Highways was identified as one of the key focus sectors under the National Infrastructure Pipeline (NIP) for expansion, including the iconic Bharatmala Pariyojana. Rural road network is also being augmented under the Pradhan Mantri Gram Sadak Yojana (PMGSY). With the expansion of the road network in the country, it is anticipated that road transportation of goods will further increase in the foreseeable future.

Human manpower behind the wheels on the road
According to All India Motor Transport Congress (AIMTC) – the apex body of transporters – there are 9.3 million goods vehicles in India, including multi axle/articulated vehicles, smaller trucks, lorries, LMVs and tankers. As per industry estimates, India had a truck to driver ratio of about 1:1.3 in the early 90s which is estimated to have dropped to 1:0.75 today, and expected to drop further to an alarmingly low 1:0.60 over the next decade!

Hence, the total number of goods vehicle drivers would be around 7.0 million, with nearly 2.3 million trucks idling due to shortage of drivers. Last year MoRTH has removed the minimum education requirement (of Class 8) for obtaining a commercial vehicle driving license to improve employment opportunities, particularly for the underprivileged skilled persons.

Reasons for driver shortage
Despite their hard work, the truck drivers in India have never got the respect they deserve. In fact, one of the least respected professions in our society is that of the truck driver. They have not been accorded any position of dignity, largely owing to their absence in the routine social life of their families and communities. Often, they become a truck driver because they can find no other job and are looked upon with open disdain. In addition, the lifestyle practices and habits (and often even the character) of a truck driver are perceived negatively by society.

And remuneration to the truck drivers is one of most neglected areas of logistics operations in India. The average earning of a truck driver is around Rs 15,000 to 20,000 per month (including daily allowance or bhatta). 85 percent of the road transport industry is from the unorganised sector, or small fleet operators, and the drivers do not have any fixed working hours, benefit of minimum wages, and a defined rest period. The truck drivers are deprived of benefits like ESI, PF, bonus and leave. The majority of the drivers are uneducated and often learn driving on the job while working as a helper or cleaner and do not have any formal defensive driving training. Added to this is the larger problem of the typical driver having a "macho" attitude and a firm belief that all accidents are not preventable – "what has to happen, will happen". Hence, he may scorn away advice relating to speed limit or wearing of seat belt.

Very few young persons want to join this profession now. Unlike other developed countries, it is rare for an Indian truck driver’s son aspiring to be a truck driver. Often this is due to the driver’s children being better educated and hence exposed to more job opportunities which are better paying without the hardships faced by their father. Many young persons prefer employment in the industrial or service sectors or, in the rural areas, may even opt to earn a living under the Government’s MNREGA scheme whilst searching for a regular job.

Hardships faced by Indian truck drivers
An Indian truck driver is on the road almost every day of the month. His is a 24×7 job which involves driving long distances across various states. The truck is virtually his "home away from home" on the road. Surveys have revealed that almost 53 percent truck drivers suffer from a health issue, 23 percent battle sleep deprivation, about 18 percent face physical stress and 12 percent mental stress.

According to MoRTH, around 1.50 lakh people are killed in road crashes annually. As per a study conducted by the Central Road Research Institute (CRRI) exhausted and sleep deprived drivers account for nearly 40 percent of road crashes.

Of the 4.65 lakh road crashes every year, a quarter are linked to truck drivers with a fatality rate of around 25 percent. Also, 50 percent of the mishaps happen between sunset and sunrise as drivers prefer to drive in the night to escape police and RTO harassment during the day. This position has changed during COVID-19 as short and medium haul drivers (covering upto 400 km in a day) are not keen to eat out or spend time in roadside dhabas and want to be with their family by night time and have dinner at home.

As per road safety experts’ recommendations, drivers should not driver for more than 8 to 10 hours in a day and take regular breaks at least every 2 hours so that they stay alert. However, goods vehicle drivers in India often drive more than 10 to 12 hours a day. Whilst an average Indian driver may "rest" for 8 to 10 hours, he effectively sleeps for only 3 to 4 hours. (these figures have also changed during the pandemic, with drivers being on the road for shorter periods).

And many of them have to make do with sleeping in their uncomfortable truck cabin or even under their truck, often in the grueling heat during summers, for fear of getting robbed of diesel, cash or the goods in their vehicles. It is also not uncommon to find a driver cooking his meal under his truck or inside the cabin using a kerosene stove, with a complete disregard to his and others’ safety. Consequently, truck drivers are under physical and mental stress that results in accidents as they often doze off whilst driving.

CSR initiatives for truck drivers
A major component of the RSIP covered softer aspects relating to the driver community like their physical, mental and behavioural health, work-life balance and time for family, personal hygiene, cleanliness and habits, lifestyle and eating habits, literacy and education, and issues relating to self-esteem, dignity and respect. These were taken up across all plants under the CSR umbrella with positive and beneficial outcomes. Some of the major initiatives taken are enumerated below:

Health camps: Truck drivers are a highly vulnerable working population due to several health risk factors including poor eyesight and hearing loss, hypertension, fatigue, obstructive sleep apnea and sleep deprivation, and insufficient physical activity. Other risk factors are exposure to diesel exhaust and risk of developing lung cancer, poor diet, obesity, and other metabolic disorders. Furthermore, they are prone to risky behaviors and lifestyles such as smoking, tobacco/gutka chewing, drinking, substance abuse, and having casual sexual contacts. These can have an adverse impact on their health with a consequent risk of traffic accidents and health problems.

What started as occasional eyesight checking camps at ACC plant locations soon turned into a comprehensive health and medical check-up program as a regular on-going activity. These are usually organised by the medical staff of the plant hospital and often doctors from nearby towns are also called in. The primary aim of the health camps is to cover the following:

Vision: At least 65 percent of our truck drivers have some vision problem, mild or acute. The younger drivers may have myopia and may require their first pair of spectacles. The older drivers also need to be checked for signs of color blindness, cataract or glaucoma and may either need to replace their old specs or get reading glasses. Thousands of drivers have been covered in the eyesight camps and hundreds of drivers provided with free prescription spectacles, mostly on the spot. It is advisable for drivers to have their vision tested at least once every 2 years.
Hearing: Hearing loss can have the most significant impact on a truck driver’s ability to do his job. The occupational conditions of truck drivers may have bilateral, symmetrical harmful effect on hearing threshold sense in all frequencies, but mainly at a frequency of 4000 Hz. Periodic medical examinations are vital for pre-diagnosing and prevention of any possible impairment.

Blood pressure: Considered a silent ailment, as there may be no symptoms of the condition, uncontrolled BP can lead to serious health problems such as heart attack and stroke. Drivers found to be having higher than normal BP are generally advised to exercise, reduce salt in their food, drink lots of water, stop smoking and drinking alcohol, and get plenty of sleep. In fact sleep deprivation is a major reason for drivers having high BP.

HIV/AIDS: Truck drivers are at increased risk of HIV/AIDS infection and of contracting other STD diseases. As Ashok Alexander, who headed Avahan (an initiative by the Bill and Melinda Gates Foundation for HIV prevention in India) states in his book A Stranger Truth, HIV prevalence among truckers ranged from 3 to 7 per cent. Avahan’s research showed that long-distance truckers were the ones most at risk; the short-haul truckers got home every night. Health camps for drivers create awareness about HIV/AIDS and counselling for prevention.

Alcohol addiction and substance abuse (tobacco, drugs, etc): Drunk driving is responsible for approximately 20 to 30 percent of crash fatalities and injuries. Alcohol can seriously impair brake reaction time, steering responsiveness, and lane control. It also increases the tendency of over-speeding and other high risk driving behaviors. Health camps have special counselling sessions to make the drivers aware of the dangers of drinking and driving as well as the legal consequences and the disastrous impact on the driver’s family. Some of our plants came up with an interesting idea of putting the driver’s family photo in the driver cabin to serve as a reminder not to risk his life for the sake of his family who wait for him to come back home safely.

Personal accident and health Insurance: As part of the HSE program and keeping in view the high risk job nature of driving on company’s business, ACC introduced a Group Personal Accident Insurance policy for third-party truck drivers to ensure their safety and wellbeing. The policy covers accidental death and total or partial disability and serves to provide a secured life and future to the driver and his dependents.

It is heartening to note that the All India Transporters Welfare Association (AITWA) launched a mega project named "Highway Heroes" for the welfare of the truck driver community on 14th November 2019. The multi-dimensional welfare scheme includes provisions like free accident insurance, hospitalisation expenses, education help to children of drivers, training, and safety and a centralised national 24×7 helpline for access in case of an emergency like an accident, attack by criminals, theft or any other harassment.

The National Health Authority (NHA) also signed an MoU with AITWA on 14th November 2019 to provide healthcare services to truck drivers under the "Ayushman Bharat – Pradhan Mantri Jan Arogya Yojana" (PM-JAY) scheme. Under this partnership, the NHA and AITWA will work together to identify truck drivers and employees of transport companies who could be eligible beneficiaries of the scheme.

Respect and dignity: In India the truck drivers appear at the bottom of the pyramid when it comes to respect and historically have been privy to lack of praise and dignity. They rarely receive respect from civic authorities like RTO, police personnel and check-post officials and one frequently hears reports of discriminatory behavior and harassment to truckers. Most drivers do not have the educational background or knowledge to deal with legal complications.

It is unfortunate that the driver’s job in India has a social disrespect and stigma attached to it. A large number of drivers find it difficult to get married as people are reluctant to marry their daughter to a driver. The driver’s children do not want to become drivers and drivers themselves have a low self-esteem.

Regular interactive sessions with drivers at ACC’s plants (often in the form of Driver Chaupals) have helped to instill and reinforce self-confidence and dignity in the drivers. They are briefed on the role as being beyond that of a mere driver to that of a brand ambassador and the customer’s first point-of contact with the company. Some of our plants have taken innovative steps like providing laundry service, toilets with bathing facility and even hair-cutting saloons in their parking yards so that drivers can freshen themselves before commencing their trip and look presentable and clean when they reach their customer. Cleanliness, hygiene and grooming also helps to increase the driver’s self-confidence and self-respect. ACC’s Thondebhavi plant in Karnataka was the first to install a full length mirror in the driver rest facility so that he can see how others view him!

ACC’s Chanda plant (near Nagpur) was the first plant in the Indian cement industry to construct a state-of-the-art fully concrete parking yard of 4.5 acres for trucks, with safety features like fishbone parking, one-way movement, no reversing, adequate illumination and separate entrance and exit gates. The parking facility (designed by the renowned Arun Das Associates) has a specially designed resting facility for the drivers with beds, toilets with showers, restaurant, clean drinking water, TV, and recreational and games facilities. The facility had a marked impact on the drivers. Truckers now wanted to visited the plant to pick up loads as they looked forward to a comfortable stay and rest whilst they waited for their turn to be called to roll the truck inside the plant for loading. Proper food, shower and rest ensured an absence of fatigue and safe driving!

Work-life balance: One of the underlying themes of our CSR initiatives is aimed at providing the driver community with adequate work-life balance. This has been achieved through a multipronged strategy of

  • providing a financial security net through personal health and accident insurance policy
  • more efficient route planning and scheduling of trucks using Fleet Management
  • System supported by GPS truck tracking from "Gate Out to Gate In" (GOGI) and RFID for streamlining the "Gate In to Gate Out"(GIGO) flow of trucks inside the plant which help in optimising the truck transit time, thereby enabling drivers to spend less time on the road. The drivers can enjoy more time with their family, eat meals with them more frequently, and sleep better.

Rewarding safe drivers: ACC installed GPS based real time truck tracking systems (IVMS) in all third party dedicated vehicles (in a phased manner) to monitor and analyse driver performance using metrics like over-speeding, route deviation, sudden acceleration, harsh braking, harsh manoeuvring and power disconnection of IVMS.

The MIS is used to develop a monthly "Performance Report Card" of each driver as well as each Road Transport Contractor and the drivers with high performance scores are felicitated and rewarded for at functions attended by their family members (wives, children and sometimes even parents). Many drivers share personal experiences about driving safety and take a pledge to extend this message across the community. In many instances, the company has also sponsored their children’s education as a safe driving reward.

These award functions serve the twin purpose of motivating other drivers to drive safely and instilling a sense of pride and self confidence in them as well as their family members. The drivers also feel that they have earned the respect of the Management when they are called upon the stage to receive their awards. Some plants have even displayed life size photographs of drivers with good safety record in their plants to motivate them.

Driver Chaupal and toolbox talks: Plants have been organising "toolbox" safety talks for drivers as informal group discussions that focus on a particular safety issue (like driving in monsoon, or risk associated with worn out tyres, importance of rest and breaks, benefits of using seat belts, safe way of tarpaulin tying, use of PPE, danger of using mobile phones whilst driving, etc). These talks are used daily to promote a safety culture as well as to facilitate health and safety discussions, often with the help of a nukkad natak.

A unique initiative taken by some ACC plants was organising a "Driver Chaupal" on a weekly basis, attended by all drivers present in the parking yard on the particular day. These are typically like corporate "town halls" where drivers get an opportunity to voice their opinions on matters affecting them like plant amenities (drinking water, canteen facility etc) and the senior management can take quick action to redress any genuine grievances.

Seat belt usage: Very few truck drivers in India have a habit of wearing a seat belt, except at police check posts to escape being fined. A bigger concern is the absence of a proper driver seat and 3 Point retractable seat belts in the older truck models. Ideally, a driver’s seat needs to be with a head restraint, adjustable and fold-down backrest, vertical and fore-aft adjustment, adjustable lumbar support and adjustable seat angle. Many of the older trucks’ driver seats do not have these features and there is no provision for fitting a retractable seat belt. Often the trucks were found to have just a common belt strap with a buckle which the drivers will tighten across their stomach to escape from penalties or fines. Many drivers carried a belief that wearing a seat belt may put them at a greater risk as they may not be able to jump out in case the truck rolls over a hill. It took painstaking effort and scores of meetings with drivers and road transport contractors to dispel this wrong notion. We also impressed upon our road transport contractors to retrofit proper seat and seat belt.

ACC also launched a "Suraksha Kavach" ("security armour") drive at plants to successfully introduce the use of a Seat Belt Convincer to demonstrate the importance of wearing a seat belt whilst driving. The Seat Belt Convincer is a crash simulator training device that simulates a low impact vehicle collision (within a speed range of 8 to 15 kmph) to reinforce the benefits of wearing a seat belt whenever the vehicle is in motion.

Truck Simulators with adjustable virtual traffic, weather conditions and road layouts were also used to train drivers and manoeuvre the vehicles in different weather conditions and terrains. The simulator allows possibility of encountering dangerous driving conditions without subjecting the driver to physical risk.

Self-cooking facility: A majority of truck drivers do their own cooking using a kerosene stove and essential utensils. It is not uncommon to find the driver and helper lighting up a stove under their truck or inside the cabin, ignoring the immense fire and explosion hazard. Both as a CSR and safety initiative ACC created kitchen facilities near the drivers’ rest rooms, equipped with running water for cleaning utensils, drinking water and cooking gas stove. The drivers were delighted with this (free of charge) facility which reduced their hardship and provided a clean, hygienic, convenient and safe place to cook their meals. It also encouraged camaraderie amongst the drivers.

Conclusion
Though our CSR and Logistics Safety Excellence journey is a decade old, we realise we have a lot of ground to cover and, to quote Robert Frost, "have promises to keep and miles to go’. We also realise that it is not enough to pursue driver community issues as a side activity. Rather, uplifting the drivers" lives needs to be an integral part of our core business strategy. Through our initiatives we help our driver partners to earn a sustainable livelihood and live a life of self-respect, dignity and pride.

Foonote:
ABOUT THE AUTHOR:
Rajesh Seth, Director Logistics (Retd), ACC.
He is IIM Ahmadabad, alumnus and has held many executive positions during his association with ACC Ltd. Today he is a visiting faculty and advisor on logistics.

BOX:
ACC’s road safety improvement programme

To tackle some of the above issues, ACC embarked on a Logistics Safety Excellence journey in 2011 with a holistic Road Safety Improvement Programme (RSIP) with a "Zero Harm" vision spanning across all the seventeen cement plants and its subsidiary Bulk Cement Corporation (India) at Kalamboli (in Navi Mumbai). RSIP had a clear, well-defined objective focusing on People, Vehicles and Processes. The program was designed in a modular format in two phases -Phase 1 covering 8 easy-to-implement steps ("low hanging fruits") and Phase 2 covering 16 steps (requiring a longer period for implementation). There was a strong emphasis on knowledge sharing and replication of best practices across all plants.

The RSIP essentially focused on:
People/Partners – defensive driving training and CSR initiatives for drivers
Vehicles – their maintenance, adherence to a 30-point checklist and road worthiness, and
Processes – traffic management, hazard identification-cum-mitigation, Journey Risk Mapping (JRM) and Driver Management Centers (DMCs).

  • The DMCs were set up at all plant locations to provide valuable support like
  • Defensive Driving Induction training (DDI) for new drivers,
  • Defensive Driving Courses for all drivers,
  • Training through truck simulators,
  • In-cab assessment, and
  • JRM briefings and debriefings
  • Driver performance assessment using "In Vehicle Monitoring System" (IVMS) and GPS

A Transport Control Tower (TCT) was set up in 2018 as a nodal point to monitor the driving patterns of the drivers and provide them counselling on safe driving. The installation of IVMS brought more vehicles within the ambit of TCT monitoring and counselling. In-camera counselling for drivers was also launched across all plants. Anti-toppling devices were fitted in transit mixers to prevent accidents caused by roll-over of mixers.

Another unique initiative was the introduction of "driver passport" for each driver (certifying his fitness to drive on company’s work) and a "Vehicle Passport" for each vehicle (certifying its road worthiness to ply on company’s business. These were earlier manual, but later changed to an electronic format. Around 30,000 vehicles and drivers (outbound and inbound) belonging to over 250 Authorised Road Transport Contractors were covered under the program. This practice was also shared with the Cement Sustainability Initiative (Task Force 3 for Driving and Contractor Safety) of the global CEO-led World Business Council for Sustainable Development (WBCSD) and adopted by other CSI member companies in the Indian cement industry.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Sustainable Procurement Practices

Published

on

By

Shares

Partha Dash, Managing Director, Moglix, discusses how India’s cement industry, a key player in the country’s construction growth, is at a critical juncture as it faces the challenge of balancing expansion with sustainable practices.

According to research by construction blog Bimhow, the construction sector contributes to 23 per cent of air pollution, 50 per cent of the climatic change, 40 per cent of drinking water pollution, and 50 per cent of landfill wastes. Over the last decade cement has been one ubiquitous element in India’s construction growth story. As the world’s second-largest producer, we are seeing an impressive growth trajectory. Major players like Birla, Adani, Dalmia Bharat, JK Cement and Shree Cement are expanding fast, with plans to add 150-160 million tonnes of capacity over the next five years. This follows a substantial increase of 120 million tonnes in the past five years, pushing India’s total capacity to around 600 million tonnes. But with all this expansion, we have got a big question – How do we ensure sustainable procurement practices, in such an energy dependent industry?

Energy-intensive nature of cement production
Making cement takes a lot of energy. Process starts with limestone being mined, crushed, and grounded, using about 5-6 per cent of the total energy. The biggest energy use happens during clinker production, where around 94-95 per cent of the energy is used. Here is where limestone is heated to very high temperatures in a kiln, which needs a lot of energy from fossil fuels like coal and pet coke. Electricity is also used to run equipment like fans and kiln drives.
Once the clinker is made, it’s ground into cement. This grinding process uses another 5-6 per cent of the energy and usually happens at facilities close to where the cement is needed. Facilities that handle both clinker production and grinding in one place are generally more energy-efficient. Many of these places use coal-powered plants to supply the heat needed for the kilns, keeping production steady.

Transitioning to bulk cement
Making cement use more efficient is key to reducing the industry’s carbon footprint. In India, as per research by World Economic Forum around 75-80 per cent of cement is sold in 50kg bags to small-scale builders and individuals. But there’s often little insight into how this bagged cement is used. Research from the World Economic Forum also shows that about 40 per cent of this cement is mixed by hand. Builders sometimes use more cement than needed, thinking it will make the structure stronger, which increases emissions.
It’s crucial to educate these small-scale users about using cement efficiently. Builders need accurate information on mixing ratios and should be encouraged to adopt design techniques that use less cement. One idea suggested in the report is to put embodied carbon labels on cement bags to provide this information, helping to promote more sustainable practices at the grassroots level.
On the flip side, bulk cement, which now makes up 20-25 per cent of India’s cement use, has its own set of challenges and opportunities. Bulk cement is often used for large-scale projects that need high-strength concrete, which tends to be more carbon-intensive. However, it also makes it easier to mix in supplementary cementitious materials (SCM), which can reduce the carbon intensity of the cement. As bulk cement use grows, especially in big infrastructure projects, balancing structural needs with lower-carbon solutions will be crucial.

Challenges in sustainable procurement
The cement industry finds it hard to adopt sustainable procurement because many companies aren’t fully on board with it. Sometimes, sustainability isn’t a big focus for the company, which means top management doesn’t fully support it. This lack of support slows down collaboration with environmental experts and limits the adoption of green practices. Additionally, many clients still prefer traditional materials, which means there’s less demand for sustainable options.
In terms of knowledge and innovation, there’s a gap in understanding how to incorporate green procurement into existing practices. Many companies aren’t fully aware of the benefits of adopting green strategies or getting environmental certifications. This lack of knowledge also affects the public sector, where innovation in sustainable practices is often held back due to a shortage of technical support and experts.
There’s also a common belief that green procurement is more expensive, which can be a significant barrier, especially when resources for sustainable products are limited. Awareness and readiness for green practices are still low. Many people don’t fully understand the importance of sustainable procurement in construction, and there’s a lack of information about the market for green materials. Without adequate training and a clear structure for green purchasing, it’s difficult for companies to fully commit to sustainability. Moreover, existing policies and regulations aren’t strong enough to drive real change and without enforcement and incentives, the availability of green materials remains limited.

Opportunities in sustainable procurement
To fully understand the opportunities in sustainable procurement, Indian construction companies need to make it a key part of their business approach. This requires strong support from top leadership, including CEOs and boards of directors. When sustainability is a central focus in a company’s goals, it not only improves environmental impact but also sets the company apart in the market. Firms that focus on green practices can attract clients who value sustainability.
Working together with industry, academic institutions and government bodies is crucial for advancing green procurement. Top institutions in India like IIMs and IITs should collaborate with agencies like the Central Pollution Control Board and the Ministry of Environment. These partnerships can help develop shared goals and standards, like ISO 14000 for Environmental Management Systems, and offer training programs across the country.
It’s crucial to help clients understand how green buildings can save money over time. These sustainable structures not only cut down on running costs but also enhance the quality of life for those who live or work in them. Organisations such as the Construction Federation of India and the Builders Association of India should promote green products, which can drive demand and reduce costs by boosting production.
The government’s role is also vital. Programmes like the Pradhan Mantri Awas Yojana should focus on using green materials to show that sustainable construction can be affordable. To encourage use of sustainable materials, giving incentives like tax breaks, just like the ones for electric vehicles, could make a big difference.
Establishing a national certification for green procurement professionals, backed by organisations like the Indian Green Building Council, can help create a skilled workforce that can lead sustainable practices in the construction industry. By seizing these opportunities, India can move toward a more sustainable future in construction.

India’s leadership in sustainable cement production
India has made impressive strides in sustainable cement production. As per a research report by JMK research and analytics in 2022, the global cement industry accounted for 26.8 per cent of industrial emissions, but Indian manufacturers have been proactive in reducing their carbon footprint. The same report also states that between 2017 and 2022, the industry cut its emissions intensity by 19.4 per cent, thanks to a rise in alternative materials like fly ash and slag Blended cements, which now make up 81 per cent of India’s output, are a big part of this progress.
Leading cement producers in India, including Ultratech Cement, Shree Cement and Dalmia Cement, have committed to reducing emissions by 20 per cent by 2030, with a long-term goal of achieving net-zero emissions by 2050. Recently, the industry introduced 150 electric trucks to reduce carbon footprints, though challenges like limited charging infrastructure and high costs remain. Still, this move is expected to cut logistics expenses by 25-40 per cent. The industry is also pushing for policy support to accelerate the adoption of electric trucks and further its sustainability goals. According to report published by India Brand and Equity Foundation, some of the major investments in renewable energy and energy storage solutions include:

  • UltraTech Cement plans to deploy 500 electric trucks and 1,000 LNG/CNG vehicles by June 2025, cutting transport emissions by 680 tonnes annually. They aim to reach 85 per cent green energy use by 2030 and boost production capacity to 200 million tonnes.
  • Shree Cement completed a 6.7 MW solar project in Haryana in September 2022.
  • Dalmia Cement aims to produce 100 per cent low-carbon cement by 2031, supported by a $405 million carbon capture investment.
  • JK Cement signed an agreement with PRESPL in October 2021 to increase the use of biomass and alternative fuels, reducing reliance on coal.

Is the impossible possible?
The Indian construction and cement industries are making prudent strides toward sustainability. Recent research shows a strong link between the use of renewable energy and economic growth, highlighting the importance of reducing reliance on traditional energy sources. The construction industry, which has a large environmental impact, must adopt greener practices to help reduce pollution and waste.
The Indian cement industry is leading the way, with plans to significantly increase its use of renewable energy by 2026. This shift not only helps reduce costs but also sets a positive example for other sectors. The focus on renewable energy, like solar and wind, and efforts to avoid new thermal power plants show a clear commitment to a more sustainable future.
As the cement industry continues to push for net-zero emissions by 2050, its proactive approach is setting a new standard. These efforts not only benefit the industry itself but also provide a roadmap for others to follow. By embracing greener practices, the cement industry is helping to pave the way for more sustainable and environmentally friendly procurement practices in India.

About the author:
Partha Dash, Managing Director, Moglix, is a sales and marketing professional with 15+ years of hands-on experience in shaping businesses especially in the emerging markets.

Continue Reading

Concrete

The Circle of Life

Published

on

By

Shares

The circular economy offers a transformative approach for the cement industry, focusing on resource efficiency, waste minimisation, and sustainable practices. ICR finds out why integrating alternative materials, reducing carbon emissions and embracing innovative technologies, is crucial for the cement sector.

The circular economy is an innovative model aimed at minimising waste and maximising the use of resources by closing the loop of product life cycles through greater resource efficiency, recycling, and reusing. Unlike the traditional linear economy, which follows a ‘take-make-dispose’ pattern, the circular economy emphasises a restorative approach that seeks to maintain the value of products, materials and resources in the economy for as long as possible.
In the context of the cement industry, which is known for its resource-intensive processes and substantial environmental footprint, embracing circular economy principles is crucial. Cement production typically involves high energy consumption and generates significant greenhouse gas emissions. By adopting circular practices, the industry can reduce its reliance on virgin raw materials, lower waste and emissions and enhance overall sustainability.
The relevance of the circular economy in cement production is evident in several key areas:
• Resource efficiency: Utilising alternative and recycled materials, such as industrial by-products or waste, can significantly reduce the demand for raw materials and lower the environmental impact of cement production.
“Utilisation of alternative raw materials in the cement industry is a key strategy for enhancing sustainability and resource efficiency. Wonder Cement has substituted traditional raw materials like limestone with industrial by-products such as fly ash, marble slurry, chemical gypsum, red mud, mine telling reject, alumina slat, iron sludge, etc. Wonder Cement not only reduces its reliance on natural resources but also mitigates environmental impacts,” says Nitin Jain, Unit Head – Integrated Plant, Nimbahera, Wonder Cement.
“Low-carbon cement production is an innovative approach by Wonder Cement aimed to reduce the carbon footprint associated with traditional cement manufacturing. This process involves several strategies to minimise CO2 emissions, which are typically high due to the energy intensive nature of clinker production. The production of blended cement, Portland Pozzolana Cement (PPC) involves mixing clinker with supplementary materials like fly ash. This not only reduces CO2 emissions but also enhances the durability and performance of the cement,” he adds.

  • Waste management: Implementing strategies to manage and repurpose waste products not only helps in minimising landfill use but also creates valuable resources for reuse in cement manufacturing.
  • Energy optimisation: Circular economy practices promote energy-efficient technologies and the use of renewable energy sources, contributing to a reduction in carbon emissions associated with cement production.
  • Product lifecycle: By focusing on the entire lifecycle of cement products, from production to disposal, the industry can develop more sustainable practices and innovative solutions for recycling and reusing cement-based materials.

Adopting a circular economy approach is not only essential for reducing the environmental impact of cement production but also for driving innovation, enhancing resource security, and fostering long-term economic resilience in the industry.

Use of Alternative and Recycled Materials
The cement industry is undergoing a transformative shift with the increasing adoption of alternative and recycled materials. This shift is driven by the
need to reduce environmental impact, conserve natural resources, and enhance the sustainability of cement production.
Alternative materials: Alternative materials, such as industrial by-products and waste materials, are increasingly being used as partial replacements for traditional raw materials like clinker.

Common examples include fly ash, slag, natural pozzolans, etc.
Recycling plays a crucial role in minimising waste and promoting a circular economy within the cement industry. Key recycled materials include:

  • Recycled concrete aggregate (RCA): Reclaimed from demolished concrete structures, RCA can be used as a partial replacement for natural aggregates in new concrete, reducing the need for virgin resources.
  • Construction and demolition waste: Incorporating materials from construction and demolition activities not only diverts waste from landfills but also provides valuable resources for cement production.

The use of these alternative and recycled materials helps in reducing the environmental footprint of cement production by lowering greenhouse gas emissions, conserving natural resources, and minimising waste. Furthermore, it supports the industry’s transition towards more sustainable and circular practices, contributing to the overall goal of reducing the sector’s impact on the environment.
According to an article published by McKinsey & Company in March 2023, the cement value chain is well positioned to create closed loops, or automatically regulated systems, for carbon dioxide, materials and minerals, and energy (see sidebar ‘Three categories of circular technologies in cement’). This entails circular economies, which are based on the principles of eliminating waste and pollution, circulating products and materials, and regenerating nature. With these points in mind, circularity can work jointly with reducing carbon emissions in cement production because circular technologies follow the paradigm of three crucial decarbonisation strategies: redesign, reduce and repurpose. According to the organisation’s estimates and expected carbon prices, circularity technologies will be value-positive by 2050, with some already more profitable than today’s business-as-usual solutions.
The report estimates show that an increased adoption of circular technologies could be linked to the emergence of new financial net-value pools worth up to roughly €110 billion by 2050, providing a new growth avenue for cement players that would otherwise face shrinking demand for their core business and significant external costs. Adopting circularity is required to mitigate at least 50 percent of this value at risk. Emerging new technologies and business models will create additional value to mitigate the residual value at risk.

Reducing and Managing Industrial Waste
Efficient waste management is critical for the sustainability of the cement industry. Reducing and managing industrial waste not only minimises environmental impact but also offers opportunities to turn waste into valuable resources. Here are some key strategies of waste-to-resource initiatives:

Waste minimisation at source

  • Process optimisation: Implementing advanced technologies and practices to improve process efficiency can significantly reduce the amount of waste generated. Techniques such as precise control of raw material inputs and process conditions help minimise production losses.
  • Cleaner production techniques: Adopting cleaner production methods, such as the use of less polluting raw materials and more efficient equipment, can reduce waste generation at the source.

Recycling and reuse

  • Alternative fuels: Industrial waste, such as tire-derived fuel or biomass, can be used as alternative fuels in cement kilns. This not only helps in reducing the consumption of traditional fossil fuels but also diverts waste from landfills.
  • By-product utilisation: By-products from other industries, such as fly ash or slag, can be integrated into cement production processes. These materials not only enhance the properties of the final product but also reduce the need for virgin raw materials.

Nitin Sharma, CEO and General Manager, Clariant IGL Specialty Chemicals (CISC), says, “As our climate gives us increasing and alarming signals of change, individuals and industries are looking for ways to reduce their environmental footprints, and the demand for bio-based chemicals is set to grow strongly in the coming years. In several applications, the use of petrochemicals and fossil carbon remains a significant issue. The transition to bio-based carbon chemistry represents a significant challenge for manufacturers.”

Waste-to-resource initiatives

  • Recycled concrete aggregate (RCA): Demolished concrete can be crushed and recycled into aggregate for use in new concrete mixes. This reduces the demand for natural aggregates and decreases the volume of construction waste.
  • Co-processing of waste: The cement industry is increasingly adopting co-processing techniques where various types of industrial and municipal waste are processed in cement kilns. This approach helps in recovering energy and material value from waste streams while simultaneously treating hazardous materials.
  • Zero-waste initiatives: Some cement plants are aiming for zero-waste targets by implementing comprehensive waste management systems that ensure all waste is either recycled, reused or recovered.

Partha Dash, Managing Director, Moglix, says, “There’s also a common belief that green procurement is more expensive, which can be a significant barrier, especially when resources for sustainable products are limited. Awareness and readiness for green practices are still low. Many people don’t fully understand the importance of sustainable procurement in construction, and there’s a lack of information about the market for green materials. Without adequate training and a clear structure for green purchasing, it’s difficult for companies to fully commit to sustainability. Moreover, existing policies and regulations aren’t strong enough to drive real change, and without enforcement and incentives, the availability of green materials remains limited.”
These strategies and initiatives reflect a growing commitment to sustainability within the cement industry. By effectively managing and repurposing industrial waste, cement producers can not only reduce their environmental impact but also contribute to a more circular and resource-efficient economy.
According to the report Indian Cement Industry: A Key Player in the Circular Economy of India published July 2020, the Indian cement industry is playing a key role by enhancing the application of renewable energy for electrical power generation. The renewable energy installed capacity (wind and solar) in cement plants increased by more than 40 per cent to 276 MW from 2010 to 2017. Out of the total, 42 MW is solar power, while off-site wind installations account for 234 MW. A company has undertaken the target of switching over to renewable energy for 100 per cent of all electrical energy needs by 2030. Big players like UltraTech Cement are targeting 25 per cent share of their total power consumption by green energy technologies.
Apart from the solar photovoltaic route, the cement industry is making efforts to tap solar energy through thermal routes.

Government initiatives
The Indian government is actively promoting circular economy principles through various policies and regulations aimed at enhancing sustainability and resource efficiency. The National Clean Energy Fund (NCEF) supports innovative projects in energy efficiency and emission reduction, including those incorporating circular economy practices.
The Swachh Bharat Mission (SBM) and Solid Waste Management Rules, 2016, focus on improving waste management and recycling, encouraging the use of recycled materials in construction and cement production. The Plastic Waste Management Rules, 2016, emphasise recycling and the use of recycled plastic, including as alternative fuel in cement kilns. The National Resource Efficiency Policy (NREP) promotes resource efficiency across sectors, including cement, and the government’s clean technology schemes incentivise the adoption of green technologies.
Additionally, the draft National Circular Economy Policy, currently in development, aims to provide a comprehensive framework for advancing circular economy practices across all industries. These initiatives collectively support the transition towards more sustainable and circular practices in the cement sector.

Emerging trends in circular economy
The cement industry is witnessing several emerging trends in circular economy practices, reflecting a shift towards greater sustainability and resource efficiency. One notable trend is the increased use of alternative fuels and raw materials. Cement producers are exploring the use of industrial and municipal waste, such as tires, plastics, and biomass, to replace traditional fossil fuels and raw materials, reducing their carbon footprint and conserving natural resources.
Another significant trend is the advancement of circular product design and lifecycle management. Cement companies are focusing on designing products that are easier to recycle or reuse at the end of their lifecycle. This includes developing new types of cement and concrete with enhanced durability
and recyclability.
Waste-to-resource initiatives are also gaining traction. Innovations in waste processing technologies enable the conversion of waste materials into valuable resources for cement production, such as incorporating recycled concrete aggregate (RCA) and by-products like fly ash and slag into new cement products.
Digitalisation and data analytics are emerging as crucial tools in advancing circular economy practices. Advanced monitoring and analytics technologies help optimise resource use, track waste streams, and improve overall efficiency in cement production.
Finally, there is a growing emphasis on collaborative partnerships. Cement companies are increasingly collaborating with governments, NGOs, and other industries to drive circular economy initiatives and develop innovative solutions for sustainable development. These trends highlight a transformative shift towards a more circular and sustainable approach in the cement industry, aligning with global efforts to reduce environmental impact and promote resource efficiency.

Conclusion
The adoption of circular economy principles in the cement industry is proving to be a pivotal step towards enhancing sustainability and reducing environmental impact. By embracing alternative and recycled materials, the industry is reducing its reliance on virgin resources and minimising waste. Government policies, such as the National Clean Energy Fund and Solid Waste Management Rules, provide crucial support for these practices, fostering a regulatory environment conducive to circular economy initiatives. Emerging trends, including the use of alternative fuels, circular product design, waste-to-resource innovations, and advanced digital technologies, underscore the industry’s commitment to resource efficiency and sustainability. Collaborative efforts across sectors further drive these advancements, paving the way for a more resilient and environmentally responsible cement industry. As the sector continues to integrate circular economy principles, it not only aligns with global sustainability goals but also sets a benchmark for other industries striving for a circular future.

– Kanika Mathur

Continue Reading

Concrete

Installing a solar system is just the first step

Published

on

By

Shares

Raman Bhatia, Founder and Managing Director, Servotech Power Systems, talks about innovative approaches to advancing energy efficiency in the solar sector, from embracing the ‘Make in India’ initiative to pioneering new technologies.

Can you provide an overview of Servotech Power Systems’ contributions to energy efficiency in the solar sector?
Throughout its journey with a strong motto of providing high-quality solar solutions, Servotech made noteworthy contributions towards energy efficiency in the solar sector, through innovative technologies and solutions. By developing high-efficiency solar solutions that are both sustainable and reliable, Servotech has played its part in making solar energy a household name. The company has expanded its reach across various sectors. Servotech’s residential solar solutions empower homeowners to reduce their carbon footprint and electricity bills. The company provides solar solutions for industries, helping them reduce energy costs, improve their environmental quotient and comply with sustainability regulations. Servotech caters to the commercial sector by offering rooftop and ground-mounted solar power plants helping them reduce electricity costs and enhance their brand image, Lastly, the company has been actively involved in executing solar projects for government institutions, aiding in the country’s renewable energy goals and by providing efficient and reliable solar solutions, we contribute to
the government’s efforts in promoting clean
energy adoption.

What role does the ‘Make in India’ initiative play in your strategy to promote energy efficiency and sustainable solutions?
Make in India, a wonderful initiative by our government, has definitely pushed manufacturers across all sectors, especially our sector, which is the renewable energy sector towards indigenous manufacturing. By manufacturing solar components locally, we significantly reduce the carbon footprint associated with transportation and logistics. Local production often leads to cost reductions in solar products which makes solar energy more affordable for consumers, encouraging wider adoption and contributing to energy efficiency. The Make in India initiative also helps create employment opportunities in the solar sector, leading to skill development and a larger workforce dedicated to renewable energy. Domestic manufacturing reduces reliance on imports and strengthens the supply chain, ensuring uninterrupted production and reducing vulnerabilities to global disruptions.

How has Servotech adapted its solar solutions to meet the evolving energy efficiency standards?
Well, it has been more than two decades now. During this long journey, we have constantly worked on ourselves, renovated, and innovated ourselves to keep up with the evolving energy efficiency standards in terms of product development, innovation and R&D. We have consistently incorporated the latest advancements in solar technology that includes the use of higher efficiency solar cells, advanced inverters, and optimised system components. We introduced innovative solar products and solutions that meet the evolving energy efficiency standards. This involves continuous research and development to create more efficient and sustainable products. We prioritise product performance and rigorous testing and quality control measures ensure that our products meet or exceed industry benchmarks and this relentless pursuit of excellence has positioned us as a leader and has helped us in delivering efficient and sustainable
solar solutions.

Could you elaborate on the significance of the engineering and design process in achieving energy efficiency in your solar EPC projects?
The engineering and design phase in solar EPC projects lays the foundation for optimal performance. It involves a careful analysis of site conditions, including solar radiation, shading and environmental factors. By carefully selecting high-performance components and designing the system for optimal orientation and tilt, engineers maximise energy capture. Additionally, this phase focuses on minimising energy losses through efficient wiring, component placement, and system integration. A well-engineered design ensures the solar system operates at peak performance, delivering substantial energy savings and a strong return on investment.

What measures does Servotech implement during the procurement and project execution phases to ensure optimal energy efficiency in its solar power projects?
Constructing a solar system involves a lot of phases with procurement and project execution being the most important ones. During the procurement phase, we prioritise the development of high-efficiency solar modules, inverters and other components. Rigorous quality assurance processes and performance testing are conducted to verify that all components meet or exceed industry standards and are compatible with project requirements. In the project execution phase, Servotech conducts detailed site assessments to determine the optimal system orientation, tilt angle and shading analysis. Strict adherence to installation guidelines and best practices ensures proper system integration and performance. Post-installation, the system undergoes comprehensive testing to verify energy efficiency and performance. Monitoring systems are often incorporated to track performance and identify areas for improvement.

How does your operation and maintenance service contribute to maintaining and enhancing the energy efficiency of installed systems?
Installing a solar system is just the first step; operating and maintaining it properly is equally important to ensure the system runs efficiently over the long term and for that we conduct regular inspections to detect and address issues like module degradation and inverter malfunctions early, preventing energy losses. Our team ensures optimal performance through routine cleaning and maintenance, which maximises sunlight absorption and energy generation. Continuous performance monitoring using advanced data analytics allows us to optimise system settings, while preventive and corrective maintenance activities minimise downtime and equipment failures. By utilising techniques such as module-level monitoring and inverter tuning, Servotech ensures that solar systems operate at peak efficiency, delivering maximum energy output and long-term cost savings.

In your view, how important is radiation data analytics and project feasibility studies in the planning of energy-efficient solar projects?
Radiation data analytics and project feasibility studies are absolutely critical for the successful planning of energy-efficient solar projects. Accurate radiation data allows for precise predictions of energy generation, system sizing and financial returns. By analysing radiation patterns, engineers can optimise system design, including orientation and tilt angles, to maximise energy capture. Feasibility studies help identify potential risks, such as shading or grid constraints, enabling proactive solutions. These studies also assess financial viability, considering ROI, payback periods, and incentives, ensuring projects are economically sound enabling data-driven decision-making throughout the project lifecycle.

Looking ahead, what are the key trends and innovations in energy efficiency that Servotech Power Systems plans to focus on in the near future?
Energy efficiency is a dynamic realm with constant emergence of trends and innovations. The company recognises the value these trends and innovations will add in the growth of energy efficiency in the solar sector. Our innovative product solar powered EV charging carport integrates solar power with EV charging, which is an innovative take on how we can charge our EVs and also save energy from renewable sources. Additionally, Servotech plans to invest in enhancing the quality of bifacial solar panels to increase energy generation. We are investing in research and development of major solar developments and understand the importance of energy storage in enhancing grid stability and optimising energy utilisation and grid optimisation. In fact, we are developing an energy storage system that will accelerate the adoption of renewable energy in low electricity areas.
Exploring digitisation of energy efficiency, we are focused on developing advanced monitoring and control systems to optimise system performance, predict maintenance needs. Lastly, to meet the growing demand for clean energy, we are exploring the integration of solar power with other renewable energy sources like wind and hydro to create hybrid power systems.

– Kanika Mathur

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds