Connect with us

Economy & Market

Bags still hold fort

Published

on

Shares

Despite entry of latest technologies like BOPP, woven bags are expected to see rise in their demand due to its cost advantage.

Cement is one of the largest bulk materials being handled on our planet. Producing a material in such massive quantities and distributing is a major logistics challenge. That is where bagging and packaging function comes in handy for the cement industry players.

Though there is hardly any change in the material consumed for manufacturing cement packaging, the new technologies and processes are making them high on productivity, safety, fast, leak-proof, and amenable to automation and ease of load and re-load, when compared to yester years when it was dangerous, hazardous and labour-intensive.

Bags are a common way of distribution in the industry, accounting for about 60 per cent of the product shipped to consumers/users. Bulk packaging, though is yet to catch up on a large scale in India, it is being patronised by some major cement manufacturers and bulk consumers.

Up to 1970s, all cement bags used to be made of jute, which had zero moisture resistance and was prone to high spillage during handling and transportation. Since then switchover to plain woven polypropylene (PP) sacks took place. To upgrade PP bags, concept of lamination was introduced which came with an increase in packaging and handling cost. Some manufacturers are also using BOPP laminated bags to enhance brand value.

Though there are several manufacturers of cement packaging bags in the country, most of the highly advanced automated machinery and systems are being imported from countries like Germany, Italy, Switzerland, the US, Taiwan etc.

Latest technologies
Innovation has been the key for growth of global players like Windmoeller & Hoelscher during the recent years, particularly when it has introduced hot air to seal the moisture-proof sacks that used to be closed with adhesives earlier, thereby reducing production costs and technical process limitations. Another global player, FLSmidth offers complete automation solutions by integrating various product types with that of fully automated packing plants, and automating even loading and unloading activities.

Latest technologies help produce much lighter woven sacks for cement packaging without losing on strength or performance of the cement sack. "Hot air sealed Block Bottom bags’ (BB bags) growth worldwide has also seen development of newer concepts. Very interesting solutions are now available in the market, especially Biaxially-Oriented Polypropylene (BOPP) laminated BB bags have picked up very well in the market," says Anuj Sahni, General Manager – Sales & Marketing, Windmoeller & Hoelscher India. These bags allow very high quality printing on the bags, even bags with metalized and holographic films are being used. BB bags with nonwoven fabric lamination and also with inner paper ply are also providing solutions for packing cement.

Referring to the latest and emerging technologies on the horizon, Pranav Desai, Vice President, R&D and Head Construction Development and Innovation Centre (CDIC), Nuvoco Vistas Corp, says, "The concepts of 2 – 3 ply paper bags are emerging gradually. These bags are biodegradable and protect the inside materials well, but only disadvantage being the cost and handling care – which again pushes up the cost."

In the process of introducing some innovative cement and concrete products into the market, Novoco has played the role of a catalyst for development of different kinds of packaging materials and consequently new packaging equipment. Nuvoco was one of the first building materials company to introduce wet ready-to-use premixed range of concrete and mortar "Instamix" in 35 kg bags. "With these ready-to-use concrete and mortar in bags, Nuvoco has ensured cost-effective and easy construction in any location. It is easy to use on site, as placing and spreading is more efficient," Desai adds.

Nuvoco has also introduced tamper proof bags by double stitching them for its Duraguard brand in the north after its market research showed concerns of duplication of the brand. This was done in order to reinforce its quality and commitment to customers.

Other cost-effective development on paper bags and equipment side are introduction of digital pasting technology. Digital pasting is a solution where the glue consumption on paper bags can be reduced drastically without compromising on bag strength, through precise gluing technology.

Cost-effective
A reasonable amount of cost is incurred towards packaging. However, the customer appreciates the benefits of better packaging and is willing to pay the additional price. ?In terms of stacking up of various options, HDPE bags are the most cost-effective, followed by Laminated PP, BOPP and Paper bags, says Desai of Nuvoco.

Three most used variants in cement packaging in India and also most of the globe, are uncoated sewn cement bags, multiwall paper sacks and hot air sealed block bottom bags (BB bags). "Sewn cement bags are lowest priced than BB bags (extrusion coated), and generally paper sacks are costlier. This is the general trend but eventual costs can depend on more variables," says Sahni.

Woven cement sacks are used multiple times after their primary function for mobilizing sand, aggregates, rubble, bricks and other materials. Also the family of plastics used for producing woven sacks are single family polyolefins, so recyclability is very easy. Besides, plastic has other benefits and is an outstanding material. "We believe that woven bag consumption for cement packaging will keep growing due to above reasons, especially in India," Sahni adds.

But the eventual cost to end users or cement companies depends on various other factors besides only the direct bag costs, i.e., bursting of bags, leakers, pilferage, counterfeiting etc., besides business opportunities in terms of margins, sales turnover, brand value etc. "We have seen cement companies prefer BB bags or multiwall solutions once the end user does a detailed analysis of eventual costs and benefits," Sahni says. The final solution being used also depends on availability of raw materials, logistics available, storage conditions, climatic conditions, and the biggest of them all, i.e., solutions preferred by the end user.

Sustainable packaging is the underlying principle that Nuvoco follows which is replicated through our Laminated PP, moisture and tamper proof cement bags.

"Today, across industry, approximately three per cent of the cement produced is lost in the supply chain and this loss is largely attributed to the cement bags being stored in open environments and use of hooks for unloading across the supply chain, making them vulnerable to damages," says Desai.

Automation
Use of automation in cement packaging is an imperative. "All our packaging machines are calibrated to discharge exact quantity of cement, ensuring higher consistency, speed and accuracy," says Desai.

A packaging solution which has strict dimensional tolerance control and has lesser number of ply would be more suited for automated filling systems. Automated systems are designed to handle a given specification of bags, if bags deviate from these specifications then the automated bag handling systems may show errors or stoppages, says Sahni.

Also cement packing is air assisted, the more the number of layers a packaging solution will have the more difficult it generally gets for the air to escape from the bag, thus reducing filling speeds. Well-designed perforation systems on multiply bags or high-porous paper can help overcome this problem, Sahni adds. Automation is being equally applied to loading and reloading of trucks to avoid congestion in factories.

The housing segment accounts for approximately 65 per cent of the cement consumption, with Affordable housing and Independent House Builders (IHBs) being major consumers. "The IHB’s tend to buy in small lots with constraints in storage space and security of the material. Hence the retail packaging dominates over bulk packaging at an overall level," Desai says.

The demand dynamics could change when we talk about large projects, where the concept of smart silos (capacity up to 8 MT) is picking up and contractors are shifting towards buying bulk cement. Also, with the increase in ready-mix usage, the share of bulk cement is gradually increasing, adds Desai.

Looking ahead
A well-designed packaging can help a cement producer work on all the issues positively and effectively- environmental impact, speed, product protection, shelf life, customer education and brand recall. Thus, the importance of bagging and packaging cannot be over estimated.

Coming to demand side dynamics, the past two years have witnessed a robust demand for cement and the momentum is expected to sustain on account of increased budgetary allocation towards infrastructure (including roads and railways), rural development and affordable housing demand in rural and urban areas especially under PMAY scheme, predicts Desai.

Cement demand has a strong co-relation with the GDP growth with an empirically established ratio of 1.2x to 1.3x, thus providing an outlook of approximately 8 per cent CAGR over next three years.

– B.S. SRINIVASALU REDDY

Factors to be considered for best packaging
The factors one should consider while searching for the best packaging production are:

  • Sack geometry
  • Sack converting
  • Sack design
  • Appearance
  • Stack design

Each aspect can be more or less important depending on the region and market the customer is looking for. Furthermore, different applications, availability of the respective materials, or even regional differences, sometimes with historical root causes may influence the decision. The supplier must be able to provide machines for the production of each sack type and after installation service. -Windmoeller & Hoelscher

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

The primary high-power applications are fans and mills

Published

on

By

Shares

Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.

As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.

How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.

What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.

Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.

Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.

How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.

What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.

Continue Reading

Concrete

We conduct regular internal energy audits

Published

on

By

Shares

Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.

In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.

How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.

What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.

What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.

What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.

How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.

What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.

Continue Reading

Concrete

Digitalisation is pivotal in driving energy efficiency

Published

on

By

Shares

As energy costs continue to dominate the cement industry, efficiency and sustainability are proving to be vital components. MM Rathi, Joint President, Power Management, Shree Cement, explains the company’s long-term strategy is focused on cutting emissions while powering growth with renewable energy solutions.

Energy efficiency has always been a cost-saving lever for the cement industry. Today, it is the backbone of sustainability and competitiveness. Cement manufacturers are under growing pressure to optimise consumption, diversify power sources and align with decarbonisation targets. Shree Cement has been at the forefront of this transformation, significantly scaling up its green power capacity and embedding advanced technologies across operations. In this exclusive conversation, MM Rathi, Joint President – Power Management, Shree Cement, shares insights on the company’s approach to energy efficiency, challenges in brownfield modernisation and long-term strategies for achieving net zero alignment.

What percentage of your total operational cost is attributed to energy consumption?
At Shree Cement, energy is one of the most significant components of production cost, accounting for nearly 30 per cent to 40 per cent of total operational expenses. Within this, thermal energy typically contributes around 20 per cent to 25 per cent, while electrical energy forms about 10 per cent to 15 per cent. The exact share varies depending on factors such as the fuel mix (coal, pet coke or alternative fuels and raw materials), the power source (grid-based or captive like solar, wind or thermal), raw mix quality, and regional fuel and electricity price variations. This makes energy efficiency and the adoption of sustainable power sources a key focus area, both from a cost and sustainability perspective.

How has your company improved energy efficiency over the past five years?
Over the past five years, Shree Cement has consistently invested in enhancing energy efficiency across operations. Our green power capacity, covering wind, solar and Waste Heat Recovery (WHR), has more than doubled from 245 MW in 2020 to 592 MW in 2025. All grinding units are now equipped with biomass firing facilities, reducing dependence on conventional fuels. From the project stage itself, we prioritise efficiency by selecting advanced technologies such as six-stage kilns with integrated WHR, CFD-designed plants, and equipment fitted with VFDs, centrifugal compressors and high-efficiency fans. We also review and upgrade equipment systematically, replacing fans, compressors, blowers, pumps, boilers and turbines with more efficient options. This continuous approach has reduced costs while significantly advancing our sustainability journey.
What technologies or practices have shown the highest energy-saving potential in cement production?
WHR stands out as one of the most effective solutions, offsetting a significant portion of electricity required for clinker production. Hot air recirculation has also proven highly beneficial in reducing heat losses. Additionally, regular energy audits help us identify opportunities for improvement and implement corrective measures in daily operations. Together, these practices play a critical role in optimising energy efficiency and driving sustainable operations.

What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
The biggest challenge is the significant upfront investment required for upgradation. Retrofitting existing facilities often involves complex civil and structural modifications, which add costs and extend downtime. Integration is another hurdle, as new high-efficiency equipment may not align seamlessly with older kiln systems, fans, mills or automation setups. These factors make the transition in brownfield plants more resource-intensive and time-consuming compared to greenfield projects.

How do you measure and benchmark energy performance across different plants?
We track key performance indicators such as specific heat consumption and specific power consumption for each unit, benchmarking them against internal and external standards. Thermal Substitution Rate (TSR percentage) is another critical metric, measuring the share of alternative fuels in the thermal energy mix. Internally, we benchmark performance across plants to encourage best practice sharing. Externally, we compare against national averages and align with the Bureau of Energy Efficiency’s PAT (Perform, Achieve, Trade) scheme, which sets Specific Energy Consumption (SEC) baselines and targets for cement plants. This multi-layered approach ensures continuous monitoring, improvement, and industry leadership in energy efficiency.

What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation is pivotal in driving energy efficiency at Shree Cement. IoT sensors integrated with SCADA and DCS systems allow real-time monitoring of parameters like heat consumption and energy use, moving beyond periodic reports. Our digital platforms consolidate plant data, enabling management to compare metrics such as SPC, SHC, kWh per tonne and kcal per kg across units in real time. This visibility supports data-driven decisions, faster corrective actions, and higher operational efficiency.

How do government policies and incentives influence your energy-saving decisions?
Government policies and incentives strongly shape our energy-saving decisions. The Perform, Achieve, Trade (PAT) scheme sets plant-specific SEC targets. Non-compliance incurs penalties, while compliance earns tradable energy-saving certificates. This ensures energy efficiency is both cost-driven and regulatory. Additionally, subsidies and viability gap funding for renewable energy projects in wind, solar and AFR co-processing help reduce payback periods and make energy-saving investments more viable.

What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
Our long-term strategy aligns energy efficiency with India’s net zero 2070 goals. Key levers include improving efficiency, expanding green electricity, producing more blended cement, and increasing alternative fuel use. Today, more than 60 per cent of our electricity comes from green sources such as solar, wind, and WHR, the highest in India’s cement industry. Our blended cement products, which reduce limestone and fuel consumption, further lower emissions. These products are certified under the GreenPro ecolabel by CII, validating our sustainability practices and environmental standards.

Continue Reading

Trending News