Connect with us

Economy & Market

Revival is in the Offing

Published

on

Shares

The demand growth trend picked up steam in FY18. Expectations are rife that FY19 will consolidate these gains and result in higher capacity utilisation, if not pricing power.
After a couple of years of demand pressures and price pressures, the Indian cement industry is expecting a full-fledged recovery in demand growth in the current fiscal. Cement production grew by 6.3 per cent and touched 298 million metric tonnes (MMT) in FY18 (2017-18), from 280 MMT in FY17, which is a 1.2 per cent fall compared to FY16. Apart from growth in demand seen in some key markets, rating agency ICRA has attributed this growth also to "the base effect of the demonetisation-driven low demand during the corresponding period of last year."
The demand for cement also dipped along with the deceleration in growth in the economy following currency demonetisation in November 2016, which derailed the growth momentum across several industries. Close on the heels of this debilitating disruption, hurried introduction of Goods and Services Tax (GST) has also left its negative trail. The growth reported in FY18 has come from the last two quarters of the year – at 11 per cent and 18 per cent respectively, despite negative growth registered in the first half of the fiscal. Analysts are considering this growth trend to be the first sign of sustained growth to be witnessed in the next few years.
Two-thirds of the total cement demand comes from housing and the remaining from infrastructure and industrial construction. "Two areas where we evidently see growth from for the cement industry is from housing and infrastructure. For the current year, we expect 5.5-6.5 per cent growth in cement production, says Ashish K Nainan, Research Analyst – Industry Research, CARE Ratings.
Is there any scope for increasing cement consumption in India? The answer is in the affirmative. Despite India being the second largest producer of cement in the world, even after two-and-a-half decades of globalisation, its per capita consumption is down in the dumps. "India is one of the lowest in per capita consumption of cement. Average consumption in India is just ~200 kg/year compared to 1700 kg/year in China and 660kg/year in Vietnam (comparable developing economy). The global average consumption is far ahead at 580kg/year," says Anoop Kumar Saxena, CEO-VICAT in India.
Calling FY18 as ‘a landmark year for the industry’ which has surpassed all odds and delivered reasonably good operating results, Vaibhav Agarwal, Analyst with PhillipCapital India Research, says, "FY19 will be a ‘year of pure execution’ driven by improving operating efficiencies, focus on a sustainable rise in volumes, and the industry re-establishing its attention on improving cement prices, led by UltraTech." Triggers
Sabyasachi Majumdar, Senior Vice President & Group Head, ICRA,
who has hinted at the first signs of revival in cement demand as back as in February 2018 itself and predicted around 5 per cent growth in FY19, said then, "This demand growth is bolstered by a pick-up in the housing segment – primarily affordable housing, rural housing and higher infrastructure spend. Improved rural incomes, higher rural credit and increased allocation for rural, agricultural and allied sector are likely to boost rural housing demand."
"Further, Pradhan Mantri Awas Yojana (PMAY) continues to be a major driver for cement demand with around 50 lakh houses targeted in the rural areas and 37 lakh houses in the urban areas in FY2019. Also, the demand is likely to be supported by the higher outlay on urban housing and the increased thrust on infrastructure as reflected in 21 per cent higher allocation," Majumdar added.
Despite several micro and macro challenges, such as demonetisation, GST, RERA, bans on overloading, sand mining, and petcoke, many of which were structural, the industry has seen a visible demand recovery in FY18, especially in the second half.
"A substantial recovery in rural demand especially from Individual House builder (IHB) segment along with sustained pickup in infrastructure development aided demand growth. We believe demand growth for current fiscal should remain healthy mainly to be supported by PMAY housing projects and continued thrust on infrastructure development," says Binod Kumar Modi – Senior Analyst – Reliance Securities.
Real estate sector witnessed disruption in construction and sales activity beginning demonetization exercise. The disruption continued with builders taking a cautious approach to RERA [The Real Estate (Regulation and Development) Act, 2016] implementation, temporarily halting new sales or construction. Implementation of RERA in May 2017 impacted the demand for cement from real estate segment in Q1 and Q2 of FY18.
FY18 witnessed implementation of Union Government backed mega-infrastructure projects such as Bharatmala for roads, Sagarmala for ports and development of dedicated freight corridors and smart city project.
"We feel the current focus from the Government is positive for the cement sector in particular. Infrastructure offers a huge tapable market for cement in India, but is limited due to limited funding for these projects at the moment. On the other hand, housing in rural and urban markets are expected to witness steady demand on the back of higher disposable income and factors like good monsoons," says Nainan.
The demonetisation exercise had impacted the demand from rural and retail real estate segment during the second half of Q3 and, Q4 in FY17. But the same has evidently recovered during FY18.
Demand drivers
VICAT India, having presence mostly in South India, expects that cement demand expected to grow ~7-8 per cent year-on-year (YoY) over the next two-three years. By now it is a given with several analysts predicting that the demand growth for cement during FY19 will surpass 5 per cent level.
Cement consumption is broadly classified into demand from three distinct segments:
Housing and real estate (65%)
Public infrastructure (20%)
Industrial development (15%)
All the analysts ICR spoke to are voting for affordable housing as the prime mover of cement demand in the coming years. Nainan of CARE says, "If one were to go by the bare-minimum market demand, affordable housing is a 8-10 billion sq.ft. opportunity. And this would form the backbone for cement demand over the next 2-3 years. Expect a 6-7 per cent growth in demand in the housing segment for cement.
Additionally, the Government has set aside Rs 6,500 crore for affordable housing in the budget which will work like a stimulus."
Stating that ICRA expects the cement demand to show a growth of around 6 per cent in FY2019, Majumdar says, "This is primarily driven by a pick-up in the affordable and rural housing segments and infrastructure – primarily road and irrigation projects. The budget of FY2019 also provides support in this direction with higher rural credit, increased MSP, increased allocation for rural, agricultural and allied sectors along with continued focus on the PMAY and infrastructure investments."
Table 1. Affordable Housing – Gross Budgetary support)
2017-18 2018-19
PMAY-Grameen Rs. 23,000 Rs. 21,000
PMAY-Urban Rs. 6,043 Rs. 6,500
"The cement consumption stood at an estimated volume of 305 million tonnes (MT) in FY18, and is expected to grow at 6-7 per cent over the next 3-5 years, on the back of higher government spending in rural and urban housing projects and growth in infrastructure spends," says Madhumita Basu, Chief of Sales, Marketing & Innovation, Nuvoco.
In the residential real estate segment, the demand was subdued in comparison to previous year due to introduction of RERA in May 2017. RERA led to disruption in construction activity and real estate developers went slow on launching new projects in Q1 and Q2 FY18. However, this dip in demand was offset by demand from construction of affordable housing.
BK Modi believes that infrastructure share in total cement consumption is likely to move up from ~25-30 per cent going forward, while explaining, "Growing urbanisation and huge infrastructure deficit in the country – which requires infrastructure development as to support sustained GDP growth – are likely to ensure higher cement consumption in this segment."
Infrastructure projects like smart cities, metro projects, roads, ports and airport projects are expected to boost cement demand would witness higher growth of 8-10 per cent from this segment. "Infrastructure development has been a key plank for the current Central Government and few key projects are nearing completion especially in the view of a nearing General Election," says Nainan.
Infrastructure contributed immensely to the cement demand in FY2018. And pre-election spending has been one of the key demand drivers for cement historically in India, particularly from infrastructure segment. It can be sensed from the favourable budget allocations on Metros, road and highways, railways, ports and irrigation projects. "We further expect traction in road construction to continue in FY19 considering 7,400 km (up 70 per cent YoY) projects awarded in FY18. Additionally, Bharatmala programme – which targets to build approximately 34,800 km by 2022 in Phase I, with an estimated investment of Rs 5.3 trillion – is likely to aid sustained demand growth for cement industry," says BK Modi. Capacity additions
In their zeal to gain market share, aggressive manufacturers added robust capacity, leading to capacity utilisations collapsing from peak full capacity in 2008 to less than 70 per cent. However, expansions helped many manufacturers gain scale and size. "From here, we expect the industry to consolidate its position and then announce green field capex. Brownfield expansions and revival of unproductive assets will drive capex from FY19 to FY21," says Agarwal of PhillipCapital.
Madhya Pradesh, Rajasthan, Andhra Pradesh, Gujarat, Chhattisgarh, Tamil Nadu and Karnataka are the largest limestone producing states in the country which is an essential raw material for cement. "Currently, cement production capacity is 441 MMT and expected to increase to 467.3 MMT by 2019 and likely to further increase to 484.1 MMT by 2020-2021. Significant concentration of the cement capacities will continue to increase in southern and western regions, largely due to bulk of limestone reserves in these regions," says Saxena of VICAT.
However, capacity utilisation is expected to remain in the range of 65-70 per cent in the next two-three years, analysts say.Consolidation
Acquiring cement assets is cost-effective for the acquirer and provides access to new market and a ready-made supplier network. Cement industry is fragmented and 55-60 per cent market share is controlled by large players and consolidation in cement sector has not significantly changed the share of large players.
Agarwal feels that incremental consolidation will be slow. However, BK Modi is of the view that considering the ongoing high cost scenario and muted realisation environment, it could be difficult for many small and mid-sized cement companies to operate in dismal profitability. "Hence, industry consolidation will continue going forward."
Nuvoco’s Basu thinks that with the major players adding capacity; the prices will come under pressure as ramping up of new capacity and capturing market growth would take priority. Looking ahead
The demand for cement will continue to grow at above 5 per cent level in the next two-three years, mainly with push coming from affordable housing projects in both urban and rural areas. The next one year is expected to be good for cement demand from infrastructure segment, being a pre-poll year. Industrial consumption of cement has been muted since November 2016 and it is unlikely to get a leg up.
The hectic consolidation activity is expected to slow down a bit going ahead, but the scene is expected to shift to smaller and newer players, with costs inching up day by day and continuing pricing pressures. Though operating environment of the industry has improved in FY18, the same cannot be said about FY19 given rising costs, unless demand spikes.
Availability of sand is a major challenge to the construction activity in India. Though artificial sand is being pitched as an alternative, its acceptability is still low.
Cement capacities, expansions and prices will be driven by regional considerations more than anything else. CARE ratings predicts that the all-India prices will remain in the range of Rs 317 (+/- 5 per cent per bag post GST) during the year."
From the present stand point, the industry has to guard against risks like hindrance to volume growth momentum and rising costs.– BS SRINIVASALU REDDY

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Why Cement Needs CCUS

Published

on

By

Shares

Cement’s deep decarbonisation cannot be achieved through efficiency and fuel switching alone, making CCUS essential to address unavoidable process emissions from calcination. ICR explores if with the right mix of policy support, shared infrastructure, and phased scale-up from pilots to clusters, CCUS can enable India’s cement industry to align growth with its net-zero ambitions.

Cement underpins modern development—from housing and transport to renewable energy infrastructure—but it is also one of the world’s most carbon-intensive materials, with global production of around 4 billion tonnes per year accounting for 7 to 8 per cent of global CO2 emissions, according to the GCCA. What makes cement uniquely hard to abate is that 60 to 65 per cent of its emissions arise from limestone calcination, a chemical process that releases CO2 irrespective of the energy source used; the IPCC Sixth Assessment Report (AR6) therefore classifies cement as a hard-to-abate sector, noting that even fully renewable-powered kilns would continue to emit significant process emissions. While the industry has achieved substantial reductions over the past two decades through energy efficiency, alternative fuels and clinker substitution using fly ash, slag, and calcined clays, studies including the IEA Net Zero Roadmap and GCCA decarbonisation pathways show these levers can deliver only 50 to 60 per cent emissions reduction before reaching technical and material limits, leaving Carbon Capture, Utilisation and Storage (CCUS) as the only scalable and durable option to address remaining calcination emissions—an intervention the IPCC estimates will deliver nearly two-thirds of cumulative cement-sector emission reductions globally by mid-century, making CCUS a central pillar of any credible net-zero cement pathway.

Process emissions vs energy emissions
Cement’s carbon footprint is distinct from many other industries because it stems from two sources: energy emissions and process emissions. Energy emissions arise from burning fuels to heat kilns to around 1,450°C and account for roughly 35 to 40 per cent of total cement CO2 emissions, according to the International Energy Agency (IEA). These can be progressively reduced through efficiency improvements, alternative fuels such as biomass and RDF, and electrification supported by renewable power. Over the past two decades, such measures have delivered measurable gains, with global average thermal energy intensity in cement production falling by nearly 20 per cent since 2000, as reported by the IEA and GCCA.
The larger and more intractable challenge lies in process emissions, which make up approximately 60 per cent to 65 per cent of cement’s total CO2 output. These emissions are released during calcination, when limestone (CaCO3) is converted into lime (CaO), inherently emitting CO2 regardless of fuel choice or energy efficiency—a reality underscored by the IPCC Sixth Assessment Report (AR6). Even aggressive clinker substitution using fly ash, slag, or calcined clays is constrained by material availability and performance requirements, typically delivering 20 to 40 per cent emissions reduction at best, as outlined in the GCCA–TERI India Cement Roadmap and IEA Net Zero Scenario. This structural split explains why cement is classified as a hard-to-abate sector and why incremental improvements alone are insufficient; as energy emissions decline, process emissions will dominate, making Carbon Capture, Utilisation and Storage (CCUS) a critical intervention to intercept residual CO2 and keep the sector’s net-zero ambitions within reach.

Where CCUS stands today
Globally, CCUS in cement is moving from concept to early industrial reality, led by Europe and North America, with the IEA noting that cement accounts for nearly 40 per cent of planned CCUS projects in heavy industry, reflecting limited alternatives for deep decarbonisation; a flagship example is Heidelberg Materials’ Brevik CCS project in Norway, commissioned in 2025, designed to capture about 400,000 tonnes of CO2 annually—nearly half the plant’s emissions—with permanent offshore storage via the Northern Lights infrastructure (Reuters, Heidelberg Materials), alongside progress at projects in the UK, Belgium, and the US such as Padeswood, Lixhe (LEILAC), and Ste. Genevieve, all enabled by strong policy support, public funding, and shared transport-and-storage infrastructure.
These experiences show that CCUS scales fastest when policy support, infrastructure availability, and risk-sharing mechanisms align, with Europe bridging the viability gap through EU ETS allowances, Innovation Fund grants, and CO2 hubs despite capture costs remaining high at US$ 80-150 per tonne of CO2 (IEA, GCCA); India, by contrast, is at an early readiness stage but gaining momentum through five cement-sector CCU testbeds launched by the Department of Science and Technology (DST) under academia–industry public–private partnerships involving IITs and producers such as JSW Cement, Dalmia Cement, and JK Cement, targeting 1-2 tonnes of CO2 per day to validate performance under Indian conditions (ETInfra, DST), with the GCCA–TERI India Roadmap identifying the current phase as a foundation-building decade essential for achieving net-zero by 2070.
Amit Banka, Founder and CEO, WeNaturalists, says “Carbon literacy means more than understanding that CO2 harms the climate. It means cement professionals grasping why their specific plant’s emissions profile matters, how different CCUS technologies trade off between energy consumption and capture rates, where utilisation opportunities align with their operational reality, and what governance frameworks ensure verified, permanent carbon sequestration. Cement manufacturing contributes approximately 8 per cent of global carbon emissions. Addressing this requires professionals who understand CCUS deeply enough to make capital decisions, troubleshoot implementation challenges, and convince boards to invest substantial capital.”

Technology pathways for cement
Cement CCUS encompasses a range of technologies, from conventional post-combustion solvent-based systems to process-integrated solutions that directly target calcination, each with different energy requirements, retrofit complexity, and cost profiles. The most mature option remains amine-based post-combustion capture, already deployed at industrial scale and favoured for early cement projects because it can be retrofitted to existing flue-gas streams; however, capture costs typically range from US$ 60-120 per tonne of CO2, depending on CO2 concentration, plant layout, and energy integration.
Lovish Ahuja, Chief Sustainability Officer, Dalmia Cement (Bharat), says, “CCUS in Indian cement can be viewed through two complementary lenses. If technological innovation, enabling policies, and societal acceptance fail to translate ambition into action, CCUS risks becoming a significant and unavoidable compliance cost for hard-to-abate sectors such as cement, steel, and aluminium. However, if global commitments under the Paris Agreement and national targets—most notably India’s Net Zero 2070 pledge—are implemented at scale through sustained policy and industry action, CCUS shifts from a future liability to a strategic opportunity. In that scenario, it becomes a platform for technological leadership, long-term competitiveness, and systemic decarbonisation rather than merely a regulatory burden.”
“Accelerating CCUS adoption cannot hinge on a single policy lever; it demands a coordinated ecosystem approach. This includes mission-mode governance, alignment across ministries, and a mix of enabling instruments such as viability gap funding, concessional and ESG-linked finance, tax incentives, and support for R&D, infrastructure, and access to geological storage. Importantly, while cement is largely a regional commodity with limited exportability due to its low value-to-weight ratio, CCUS innovation itself can become a globally competitive export. By developing, piloting, and scaling cost-effective CCUS solutions domestically, India can not only decarbonise its own cement industry but also position itself as a supplier of affordable CCUS technologies and services to cement markets worldwide,” he adds.
Process-centric approaches seek to reduce the energy penalty associated with solvent regeneration by altering where and how CO2 is separated. Technologies such as LEILAC/Calix, which uses indirect calcination to produce a high-purity CO2 stream, are scaling toward a ~100,000 tCO2 per year demonstrator (LEILAC-2) following successful pilots, while calcium looping leverages limestone chemistry to achieve theoretical capture efficiencies above 90 per cent, albeit still at pilot and demonstration stages requiring careful integration. Other emerging routes—including oxy-fuel combustion, membrane separation, solid sorbents, and cryogenic or hybrid systems—offer varying trade-offs between purity, energy use, and retrofit complexity; taken together, recent studies suggest that no single technology fits all plants, making a multi-technology, site-specific approach the most realistic pathway for scaling CCUS across the cement sector.
Yash Agarwal, Co-Founder, Carbonetics Carbon Capture, says, “We are fully focused on CCUS, and for us, a running plant is a profitable plant. What we have done is created digital twins that allow operators to simulate and resolve specific problems in record time. In a conventional setup, when an issue arises, plants often have to shut down operations and bring in expert consultants. What we offer instead is on-the-fly consulting. As soon as a problem is detected, the system automatically provides a set of potential solutions that can be tested on a running plant. This approach ensures that plant shutdowns are avoided and production is not impacted.”

The economics of CCUS
Carbon Capture, Utilisation and Storage (CCUS) remains one of the toughest economic hurdles in cement decarbonisation, with the IEA estimating capture costs of US$ 80-150 per tonne of CO2, and full-system costs raising cement production by US$ 30-60 per tonne, potentially increasing prices by 20 to 40 per cent without policy support—an untenable burden for a low-margin, price-sensitive industry like India’s.
Global experience shows CCUS advances beyond pilots only when the viability gap is bridged through strong policy mechanisms such as EU ETS allowances, Innovation Fund grants, and carbon Contracts for Difference (CfDs), yet even in Europe few projects have reached final investment decision (GCCA); India’s lack of a dedicated CCUS financing framework leaves projects reliant on R&D grants and balance sheets, reinforcing the IEA Net Zero Roadmap conclusion that carbon markets, green public procurement, and viability gap funding are essential to spread costs across producers, policymakers, and end users and prevent CCUS from remaining confined to demonstrations well into the 2030s.

Utilisation or storage
Carbon utilisation pathways are often the first entry point for CCUS in cement because they offer near-term revenue potential and lower infrastructure complexity. The International Energy Agency (IEA) estimates that current utilisation routes—such as concrete curing, mineralisation into aggregates, precipitated calcium carbonate (PCC), and limited chemical conversion—can realistically absorb only 5 per cent to 10 per cent of captured CO2 at a typical cement plant. In India, utilisation is particularly attractive for early pilots as it avoids the immediate need for pipelines, injection wells, and long-term liability frameworks. Accordingly, Department of Science and Technology (DST)–supported cement CCU testbeds are already demonstrating mineralisation and CO2-cured concrete applications at 1–2 tonnes of CO2 per day, validating performance, durability, and operability under Indian conditions.
However, utilisation faces hard limits of scale and permanence. India’s cement sector emits over 200 million tonnes of CO2 annually (GCCA), far exceeding the absorptive capacity of domestic utilisation markets, while many pathways—especially fuels and chemicals—are energy-intensive and dependent on costly renewable power and green hydrogen. The IPCC Sixth Assessment Report (AR6) cautions that most CCU routes do not guarantee permanent storage unless CO2 is mineralised or locked into long-lived materials, making geological storage indispensable for deep decarbonisation. India has credible storage potential in deep saline aquifers, depleted oil and gas fields, and basalt formations such as the Deccan Traps (NITI Aayog, IEA), and hub-based models—where multiple plants share transport and storage infrastructure—can reduce costs and improve bankability, as seen in Norway’s Northern Lights project. The pragmatic pathway for India is therefore a dual-track approach: utilise CO2 where it is economical and store it where permanence and scale are unavoidable, enabling early learning while building the backbone for net-zero cement.

Policy, infrastructure and clusters
Scaling CCUS in the cement sector hinges on policy certainty, shared infrastructure, and coordinated cluster development, rather than isolated plant-level action. The IEA notes that over 70 per cent of advanced industrial CCUS projects globally rely on strong government intervention—through carbon pricing, capital grants, tax credits, and long-term offtake guarantees—with Europe’s EU ETS, Innovation Fund, and carbon Contracts for Difference (CfDs) proving decisive in advancing projects like Brevik CCS. In contrast, India lacks a dedicated CCUS policy framework, rendering capture costs of USD 80–150 per tonne of CO2 economically prohibitive without state support (IEA, GCCA), a gap the GCCA–TERI India Cement Roadmap highlights can be bridged through carbon markets, viability gap funding, and green public procurement.
Milan R Trivedi, Vice President, Shree Digvijay Cement, says, “CCUS represents both an unavoidable near-term compliance cost and a long-term strategic opportunity for Indian cement producers. While current capture costs of US$ 100-150 per tonne of CO2 strain margins and necessitate upfront retrofit investments driven by emerging mandates and NDCs, effective policy support—particularly a robust, long-term carbon pricing mechanism with tradable credits under frameworks like India’s Carbon Credit Trading Scheme (CCTS)—can de-risk capital deployment and convert CCUS into a competitive advantage. With such enablers in place, CCUS can unlock 10 per cent to 20 per cent green price premiums, strengthen ESG positioning, and allow Indian cement to compete in global low-carbon markets under regimes such as the EU CBAM, North America’s buy-clean policies, and Middle Eastern green procurement, transforming compliance into export-led leadership.”
Equally critical is cluster-based CO2 transport and storage infrastructure, which can reduce unit costs by 30 to 50 per cent compared to standalone projects (IEA, Clean Energy Ministerial); recognising this, the DST has launched five CCU testbeds under academia–industry public–private partnerships, while NITI Aayog works toward a national CCUS mission focused on hubs and regional planning. Global precedents—from Norway’s Northern Lights to the UK’s HyNet and East Coast clusters—demonstrate that CCUS scales fastest when governments plan infrastructure at a regional level, making cluster-led development, backed by early public investment, the decisive enabler for India to move CCUS from isolated pilots to a scalable industrial solution.
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, says, “Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that in the absence of a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.”

From pilots to practice
Moving CCUS in cement from pilots to practice requires a sequenced roadmap aligning technology maturity, infrastructure development, and policy support: the IEA estimates that achieving net zero will require CCUS to scale from less than 1 Mt of CO2 captured today to over 1.2 Gt annually by 2050, while the GCCA Net Zero Roadmap projects CCUS contributing 30 per cent to 40 per cent of total cement-sector emissions reductions by mid-century, alongside efficiency, alternative fuels, and clinker substitution.
MM Rathi, Joint President – Power Plants, Shree Cement, says, “The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80-150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives. While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.”
Early pilots—such as India’s DST-backed CCU testbeds and Europe’s first commercial-scale plants—serve as learning platforms to validate integration, costs, and operational reliability, but large-scale deployment will depend on cluster-based scale-up, as emphasised by the IPCC AR6, which highlights the need for early CO2 transport and storage planning to avoid long-term emissions lock-in. For India, the GCCA–TERI India Roadmap identifies CCUS as indispensable for achieving net-zero by 2070, following a pragmatic pathway: pilot today to build confidence, cluster in the 2030s to reduce costs, and institutionalise CCUS by mid-century so that low-carbon cement becomes the default, not a niche, in the country’s infrastructure growth.

Conclusion
Cement will remain indispensable to India’s development, but its long-term viability hinges on addressing its hardest emissions challenge—process CO2 from calcination—which efficiency gains, alternative fuels, and clinker substitution alone cannot eliminate; global evidence from the IPCC, IEA, and GCCA confirms that Carbon Capture, Utilisation and Storage (CCUS) is the only scalable pathway capable of delivering the depth of reduction required for net zero. With early commercial projects emerging in Europe and structured pilots underway in India, CCUS has moved beyond theory into a decisive decade where learning, localisation, and integration will shape outcomes; however, success will depend less on technology availability and more on collective execution, including coordinated policy frameworks, shared transport and storage infrastructure, robust carbon markets, and carbon-literate capabilities.
For India, a deliberate transition from pilots to practice—anchored in cluster-based deployment, supported by public–private partnerships, and aligned with national development and climate goals—can transform CCUS from a high-cost intervention into a mainstream industrial solution, enabling the cement sector to keep building the nation while sharply reducing its climate footprint.

– Kanika Mathur

Continue Reading

Concrete

CCUS has not yet reached commercial integration

Published

on

By

Shares

MM Rathi, Joint President – Power Plants, Shree Cement, suggests CCUS is the indispensable final lever for cement decarbonisation in India, moving from pilot-stage today to a policy-driven necessity.

In this interview, MM Rathi, Joint President – Power Plants, Shree Cement, offers a candid view on India’s CCUS readiness, the economic and technical challenges of integration, and why policy support and cluster-based infrastructure will be decisive in taking CCUS from pilot stage to commercial reality.

How critical is CCUS to achieving deep decarbonisation in cement compared to other levers?
CCUS is critical and ultimately indispensable for deep decarbonisation in cement. Around 60 per cent to 65 per cent of cement emissions arise from limestone calcination, an inherent chemical process that cannot be addressed through energy efficiency, renewables, or alternative fuels. Clinker substitution using fly ash, slag, and calcined clay can reduce emissions by 20 per cent to 40 per cent, while energy transition measures can abate 30 per cent to 40 per cent of fuel-related emissions. These are cost-effective, scalable, and form the foundation of decarbonisation efforts.
However, these levers alone cannot deliver reductions beyond 60 per cent. Once they reach technical and regional limits, CCUS becomes the only viable pathway to address residual
process emissions. In that sense, CCUS is not an alternative but the final, non-negotiable step toward net-zero cement.

What stage of CCUS readiness is the Indian cement sector currently at?
The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80–150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives.
While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.

What are the biggest technical challenges of integrating CCUS into existing Indian kilns?
Retrofitting CCUS into existing Indian cement plants presents multiple challenges. Many plants have compact layouts with limited space for capture units, compressors, and CO2 handling systems, requiring modular and carefully phased integration.
Kiln flue gases contain high CO2 concentrations along with dust and impurities, increasing risks of fouling and corrosion and necessitating robust gas pre-treatment. Amine-based capture systems also require significant thermal energy, and improper heat integration can affect clinker output, making waste heat recovery critical.
Additional challenges include higher power and water demand, pressure drops in the gas path, and maintaining kiln stability and product quality. Without careful design, CCUS can impact productivity and reliability.

How does the high cost of CCUS impact cement pricing, and who bears the cost?
At capture costs of US$ 80-150 per tonne of CO2, CCUS can increase cement production costs by US$ 30-60 per tonne, potentially raising cement prices by 20 to 40 per cent. Initially, producers absorb the capital and operating costs, which can compress margins. Over time, without policy support, these costs are likely to be passed on to consumers, affecting affordability in a highly price-sensitive market like India. Policy mechanisms such as subsidies, tax credits, carbon markets, and green finance can significantly reduce this burden and enable cost-sharing across producers, policymakers, and end users.

What role can carbon utilisation play versus geological storage in India?
Carbon utilisation can play a supportive and transitional role, particularly in early CCUS deployment. Applications such as concrete curing and mineralisation can reuse 5 to 10 per cent of captured CO2 while improving material performance. Fuels and chemicals offer niche opportunities but depend on access to low-cost renewable energy. However, utilisation pathways are limited in scale and often involve temporary carbon storage. With India’s cement sector emitting over 200 million tonnes of CO2 annually, utilisation alone cannot deliver deep decarbonisation.
Long-term geological storage offers permanent sequestration at scale. India has significant potential in deep saline aquifers and depleted oil and gas fields, which will be essential for achieving net-zero cement production.

How important is government policy support for CCUS viability?
Government policy support is central to making CCUS commercially viable in India. Without intervention, CCUS costs remain prohibitive and adoption will remain limited to pilots.
Carbon markets can provide recurring revenue streams, while capital subsidies, tax incentives, and concessional financing can reduce upfront risk. Regulatory mandates and green public procurement can further accelerate adoption by creating predictable demand for low-carbon cement. CCUS will not scale through market forces alone; policy design will determine its pace and extent of deployment.

Can CCUS be scaled across mid-sized and older plants?
In the near term, CCUS is most viable for large, modern integrated plants due to economies of scale, better layout flexibility, and access to waste heat recovery. Mid-sized plants may adopt CCUS selectively over time through modular systems and shared CO2 infrastructure, though retrofit costs can be 30 to 50 per cent higher. For older plants nearing the end of their operational life, CCUS retrofitting is generally not economical, and decarbonisation efforts are better focused on efficiency, fuels, and clinker substitution.

Will CCUS become a competitive advantage or a regulatory necessity?
Over the next decade, CCUS is expected to shift from a competitive advantage to a regulatory necessity. In the short term, early adopters can access green finance, premium procurement opportunities, and sustainability leadership positioning. Beyond 2035, as emissions regulations tighten, CCUS will become essential for addressing process emissions. By 2050, it is likely to be a mandatory component of the cement sector’s net-zero pathway rather than a strategic choice.

– Kanika Mathur

Continue Reading

Concrete

Cement Additives for Improved Grinding Efficiency

Published

on

By

Shares

In a two-part series, Consultant and Advisor Shreesh A Khadilkar, discusses how advanced additive formulations allow for customised, high-performance and niche cements.

Cement additives are chemicals (inorganic and organic) added in small amounts (0.01 per cent to 0.2 per cent by weight) during cement grinding. Their main job? Reduce agglomeration, prevent pack-set, and keep the mill running smoother. Thus, these additions primarily improve, mill thru-puts, achieve lower clinker factor in blended cements PPC/PSC/PCC. Additionally, these additives improve concrete performance of cements or even for specific special premium cements with special USPs like lower setting times or for reduced water permeability in the resultant cement mortars and concrete (water repellent /permeation resistant cements), corrosion resistance etc
The Cement additives are materials which could be further differentiated as:

Grinding aids

  • Bottlenecks in cement grinding capacity, such materials can enhance throughputs
  • Low specific electrical energy consumption during cement grinding
  • Reduce “Pack set” problem and improve powder flowability

Quality improvers

  • Opportunity for further clinker factor reduction
  • Solution for delayed cement setting or strength development issues at early or later ages.
  • Others: Materials which are used for specific special cements with niche properties as discussed in the subsequent pages.

When cement additives are used as grinding aids or quality improvers, in general the additives reduce the inter-particle forces; reduce coating over grinding media and mill internals. Due to creation of like charges on cement particles, there is decreased agglomeration, much improved flowability, higher generation of fines better dispersion of particles in separator feed and reduction of mill filling level (decrease of residence time). However, in VRM grinding; actions need to be taken to have stable bed formation on the table.
It has been reported in literature and also substantiated by a number of detailed evaluations of different cement additive formulations in market, that the cement additive formulations are a combination of different chemical compounds, composed of:
1. Accelerator/s for the hydration reaction of cements which are dependent on the acceleration effect desired in mortar compressive strengths at early or later ages, the choice of the materials is also dependent on clinker quality and blending components (flyash / slag) or a mix of both.
2. Water reducer / workability / wet-ability enhancer, which would show impact on the resultant cement mortars and concrete. Some of the compounds (retarders) like polysaccharide derivatives, gluconates etc., show an initial retarding action towards hydration which result in reducing the water requirements for the cements thus act as water reducers, or it could be some appropriate polymeric molecules which show improved wet-ability and reduce water demand. These are selected based on the mineral component and type of Cements (PPC/PSC /PCC).
3. Grinding aids: Compounds that work as Grinding Aid i.e. which would enhance Mill thru-put on one hand as well as would increase the early strengths due to the higher fines generation/ or activation of cement components. These compounds could be like alkanol-amines such as TIPA, DEIPA, TEA etc. or could be compounds like glycols and other poly-ols, depending on whether it is OPC or PPC or PSC or PCC manufacture.

Mechanism of action
1. Reduce Agglomeration ; Cement particles get electrostatically charged during grinding; stick together ; form “flocs” ; block mill efficiency ; waste energy. Grinding aid molecules adsorb onto particle surfaces ; neutralise charge ; prevent re-agglomeration.
2. Improve Powder Flowability; Adsorbed molecules create a lubricating layer; particles slide past each other easier ; better mill throughput ; less “dead zone” buildup.
;Also reduces caking on mill liners, diaphragms, and separator screens ; less downtime for cleaning.
3. Enhance Grinding Efficiency (Finer Product Faster) ; By preventing agglomeration, particles stay dispersed ; more surface area exposed to grinding media ? finer grind achieved with same energy input ; Or: same fineness achieved with less energy ; huge savings.

Example:

  • Without aid ? 3500 cm²/g Blaine needs 40 kWh/ton
  • With use of optimum grinding aid ? same fineness at 32 kWh/ton ? 20 per cent energy savings

4. Reduce Pack Set and Silo Caking, Grinding aids (GA) inhibit hydration of free lime (CaO) during storage ,  prevents premature hardening or “pack set” in silos. , especially critical in humid climates or with high free lime clinker.

It may be stated here that overdosing of GA , can cause: – Foaming in mill (especially with glycols) ? reduces grinding efficiency, retardation of cement setting (especially with amines/acids), odor issues (in indoor mills) – Corrosion of mill components (if acidic aids used improperly)
The best practice to optimise use of GA is , Start with 0.02 per cent to 0.05 per cent dosage , test fineness, flow, and set time , adjust up/down. Due to static charge of particles, the sample may stick to the sides of sampler pipe and so sampling need to be properly done.
Depending on type of Cements i.e. OPC, PPC, PSC, PCC, the grinding aids combinations need to be optimised, a typical Poly carboxylate ether also could be a part of the combo grinding aids

Cement additives for niche properties of the Cement in Concrete.
The cement additives can also be tailor made to create specific niche properties in Cements, OPC, PPC, PSC and PCC to create premium or special brands. The special niche properties of the cement being its additional USP of such cement products, and are useful for customers to build a durable concrete structure with increased service life.
Such properties could be:

  • Additives for improved Concrete performance of Cements, High early strength in PPC/PSC/PCC, much reduced water demand in cement, cements with improved slump retentivity in concrete, self-compacting, self levelling in concrete, cements with improved adhesion property of the cement mortar
  • Water repellence / water proofing, permeability resistance in Mortars and Concrete.
  • Biocidal cement
  • Photo catalytic cements
  • Cements with negligible ASR reactions etc.

Additives for cements for improved concrete performance
High early strengths: Use of Accelerators. These are chemical compounds which enhance the degree of hydration of cement. These can include setting or hardening accelerators depending on whether their action occurs in the plastic or hardened state respectively. Thus, the setting accelerators reduce the setting time, whereas the hardening accelerators increase the early age strengths. The setting accelerators act during the initial minutes of the cement hydration, whereas the hardening accelerators act mainly during the initial days of hydration.
Chloride salts are the best in class. However, use of chloride salts as hardening accelerators are strongly discouraged for their action in promoting the corrosion of rebar, thus, chloride-free accelerators are preferred. The hardening accelerators could be combinations of compounds like nitrate, nitrite and thiocyanate salts of alkali or alkaline earth metals or thiosulphate, formate, and alkanol amines depending on the cement types.
However, especially in blended Cements (PPC/PSC/PCC the increased early strengths invariably decrease the 28 Day Strengths. These aspects lead to creating combo additives along with organic polymers to achieve improved early strengths as well as either same or marginally improved 28 Days strengths with reduced clinker factor in the blended cement, special OPC with reduced admixture requirements. With use of appropriate combination of inorganic and organic additives we could create an OPC with substantially reduced water demand or improved slump retentivity. Use of such an OPC would show exceptional concrete performance in high grade concretes as it would exhibit lower admixture requirements in High Grade Concretes.
PPC with OPC like Properties: With the above concept we could have a PPC, having higher percentage flyash, with a combo cement additive which would have with concrete performance similar to OPC in say M40/M50 concrete. Such a PPC would produce a high-strength PPC concrete (= 60 MPa @ 28d) + Improved Workability, Durability and Sustainability.
Another interesting aspect could also be of using Ultrafine fine flyash /ultrafine slags as additions in OPC/PPC/PSC for achieving lower clinker factor as well as to achieve improved later age strengths with or without a combo cement additive.
The initial adhesion property at sites of especially PPC/PSC/PCC based mortars can be improved through use of appropriate organic polymers addition during the manufacture of these cements. Such Cements would have a better adhesion property for plastering/brick bonding etc., as it has much lower rebound loss of their Mortars in such applications.
It is needless to mention here that with use of additives, we could also have cement with viscosity modifying cement additives, for self-compaction and self-leveling concrete performance.
Use of Phosphogypsum retards the setting time of cements, we can use additive different additive combos to overcome retardation and improve the 1 day strengths of the cements and concretes.

The concluding part of this article will appear in the next issue of ICR.

About the author:
Shreesh Khadilkar, Consultant & Advisor, Former Director Quality & Product Development, ACC, a seasoned consultant and advisor, brings over 37 years of experience in cement manufacturing, having held leadership roles in R&D and product development at ACC Ltd. With deep expertise in innovative cement concepts, he is dedicated to sharing his knowledge and improving the performance of cement plants globally.

Continue Reading

Trending News