Technology
Technology trends in cement manufacturing
Published
8 years agoon
By
admin
– Dr Anjan K Chattejee
What have been the visible technological advancements in cement manufacturing during the last decade?
The cement industry in the world has grown phenomenally in the last decade and the production level of all varieties of Portland cements taken together has crossed four billion tonnes, which is the largest volume amongst all manmade materials. Such growth has been possible due to considerable advances made in the hardware and software of cement manufacture. The main drivers for these technological advances have so far been the ‘cost’ and ‘quality’ of products. The technological progress has been multi-dimensional as reflected in the following features:
1. The capacity of a single kiln for clinker making has reached 12,000-13,000 tonne (t) per day, although in the recent years there is a trend of installing kilns of lower capacity due to economic and logistics reasons.
2. With automation, instrumentation, computer-aided controls and integration of expert systems the man-hours per tonne of cement came down to one or even less, thereby reducing the application of human discretion and increasing the dependence on electronic gadgets.
3. The choice of grinding systems for raw material and clinker has been dependent on the better energy utilisation factor, which has led to more extensive adoption of vertical roller mills, high-pressure roll presses and horizontal roller mills.
4. The fourth generation clinker coolers are now available from several suppliers, operating with 75 per cent efficiency of the theoretical maximum.
5. Significant developments have taken place in multi-channel burners, which have been specifically designed for co-incineration of alternative fuels.
6. The efficiency of the thermal process inclusive of raw materials drying has now touched almost 80 per cent of the theoretical maximum.
7. Driven by the rising prices of power and fuel, experiencing concerns about grid reliability, and fulfilling the commitments to sustainable development, the cement industry has taken more interest in ‘waste heat recovery’. While the most common water-steam cycles operate at heat source temperatures as low as 3000C, for heat recovery from still lower temperatures, the Organic Rankin Cycle, utilising organic compounds as process flows or the Kalina Cycle, using a water-ammonia solution, are now available for implementation in cement plants.
8. For sustainable production, the AFR use has taken deep root in the operational philosophy. Depending on the social conditions, living habits, availability of AFR and its collection systems, the extent of use varies from country to country, although the objective is to maximise its use.
9. Process measures and secondary abatement technologies ensure low emissions of dust, NOx and SOx in all modern plants. Recently additional focus has been laid on emissions of mercury and carbon dioxide. In parallel, there has been significant progress in developing continuous emission monitoring systems.
10. There has been widespread application of computational fluid dynamics (CFD) and of physical simulation and modelling in solving process and design problems.What are your observations on the progress achieved in reducing the energy consumption in manufacturing?
The global average thermal and electrical energy consumption levels are reportedly 800-850 kcal/kg of clinker and 100-110 kWh/t of cement. Compared to these levels the average specific energy consumption values in India are 725 kcal/kg clinker and 82 kWh/t cement and the corresponding best values obtained are 667 kcal/kg and 68 kWh/t. From these values it appears that globally there is still enough scope for better energy management, while in India the potential of energy conservation is rather limited.
In this context, it is important to note that more rigorous environmental norms will, of course, reduce the emission loads but at the cost of energy. Further, stricter specifications of products, more stringent control of particle size requirements, use of non-carbonate alternative materials, etc. are expected to integrate new or additional process measures, which might increase the energy consumption. Hence, the potential of further energy conservation in our country in particular will depend on the future course of product quality and environmental demands. In addition, the limitations of plant vintage, design and layout may act as obstacles in achieving further energy conservation.Are you satisfied with the research done on low- and off-grade limestone?
While the use of low- or off-grade limestone is not a critical concern in many countries, it is certainly an issue that needs to be dealt with more seriously in our country, as it can create 25-30 per cent additional resource base for the rapidly expanding industry. Limestone having CaO content of less than 42 per cent and limestone containing impurities of high silica or high magnesia or high iron content fall in this category and viable technologies for their use will be of immense economic benefit. Researches in this field, however, are sporadic and academic. The current technologies are limited to ‘sweetening’, wobbling, belt sorting, and froth flotation.
The newer technological options of photometric sorting, electrostatic separation, bioleaching, or making products not conforming to the conventional types, continue to be exploratory in their development. On the contrary, utilisation of marginal grade limestone by the cement industry deserves a ‘mission’ status in our country. Since dry manufacturing systems can these days co-exist with wet preparation of raw materials, improved froth flotation and bioleaching techniques cannot be ignored.
More logical perhaps is to look at new products and new processes, High-belite cement and high-magnesia blended cement are examples of such possibilities. Use of dolomitic limestone for simultaneous manufacture of cement and magnesia is a technology worth re-examining. Broadly speaking, it is time to lay much greater emphasis on research on utilising low-grade limestone.What is the status of research for enhancing the use of high-ash coal?
We all know that the cement industry has been a very effective user of high-ash coal. The kiln burners are designed suitably to combust high-ash coal and the plants make use of coal with ash content of 35-40 per cent in most cases. Mixing of coal with varying ash contents has also been in practice to facilitate the use of high-ash coal. Several attempts were made in the past to install small captive coal washing units in a few cement plants to upgrade the quality of coal for process consumption but not with success due to economic and operational reasons. A few pit-head coal washing plants are operating in the country to de-ash non-coking coal prior to supply to the cement units and other users. The aforesaid measures do not seem to be adequate to meet the future demand of clean coal. Hence, for enhancing the use of high-ash coal further it would be important to integrate the technology of coal gasification with the cement manufacturing process.
Technologies for coal gasification are decades old but their integration with the cement manufacturing process needs specific development with regard to the operational features and economic viability. It is pertinent to mention here that coal gasification is attractive from the economic and energy security perspectives but the overall carbon intensity is much higher than coal mining. The technology is also water-intensive. Nevertheless, the abundantly available resource of high-ash coal in the country needs to be considered an object of priority in meeting the energy demand by adopting such a technology. It is interesting to note that China has laid out plans to produce 50 billion cubic metres of gas from coal by 2020, enough to satisfy more than 20 per cent of total gas demand. Despite the stated environmental shortfalls, the technology has been introduced in order to exploit the stranded coal deposits sitting thousands of kilometres away from the main industrial consuming centres, as transportation of gas is deemed cheaper than transporting solid fuel. It might also be pertinent to mention here that in some countries the adverse environmental problems of gasification technology has led to considering the alternative ‘underground coal gasification’ process.
In brief, the process involves pumping oxygen and steam through a small borehole into the coal seam to cause local combustion. The synthetic gas product consisting of hydrogen, methane, carbon monoxide and carbon dioxide is siphoned off through a second borehole and is collected, transported, stored and used. It is reported that the underground coal gasification process substantially reduces the CO2 emission.
While on the subject, another widely known clean coal technology of ‘coal bed methane’ deserves a mention. The process is relevant for coal deposits that are too deep to mine. Water is sucked out of the seam and methane attached to the surface of the coal seam is freed and then collected. The CBM technology is said to have fundamentally changed the dynamics of the gas industry in Australia.
Considering the plethora of options for clean coal technology, it is important for the cement industry to be more involved in coal research but in a co-ordinated national strategy, as it cannot be handled at the individual company level.What is the progress in real-time analysis for QC in cement plants?
Recent developments in the use of x-ray diffraction are changing the traditional methods of quality and process control, as they have the ability to measure mineral phases or compounds formed directly in real time. Cement and clinker production involves chemical reactions to produce precisely controlled blends of phases with specific properties. So far there has been overwhelming dependence on either off-line or on-line oxide or elemental analysis of raw or in-process materials for QC.
Methods and equipment are now available for continuous quantitative on-stream analysis of the mineral or phase composition of cement and clinker. The instrument is a stand-alone piece of equipment, which is installed at the sampling point. A sample for analysis is extracted from the process stream and after due preparation on-line the sample passes through the x-ray beam.
The diffracted x-rays are collected over 0 to 1200 by a detector. The Rietveld structural refinement technique is applied to analyse the resulting diffraction pattern. The analysis of the moving stream is done in close frequency of, say, once every minute. All analysis results are communicated directly to the plant PLC system. The real-time measurement of the mineral composition of cement and clinker for process control is a paradigm shift for the cement industry. The discernible benefits of using on-stream x-ray diffraction are the following:
- Control of kiln burner based on free lime, clinker reactivity, alkali and sulphur contents
- Control of cement mill separators and feed rates and proportions to achieve consistent cement strength at minimum power consumption
- Control of gypsum dehydration through cement mill temperature to give consistent setting times
- Control of mill weigh-feeders for different feed materials.
The net advantages of implementation of such on-line QC systems are the optimum performance and cost, reduced risk of product failure and consequent marketing benefits.
Another development in the on-stream analysis, apart from the widely used bulk analyser based on Y-radiation, is the application of infrared spectra that are provided by the stabilised white light source. The light illuminates the target bulk material to be analysed as it passes the unit on an existing conveyor belt. The infrared radiation excites vibrational oscillations of the molecular bonds in the material under test, which results in reflection and absorption spectra that are characteristic of minerals being analysed.
The Near Infrared (NIR) ranges are applied for analysing limestone materials. It is claimed that the IR based on-line bulk analyser shows better performance for the cement raw material constituents than the traditional Y-ray equipment. One additional advantage in this new development is the avoidance of potentially hazardous excitation sources.What would you like to highlight as significant technological steps in pyro-processing?
Over and above the standard features of a large-capacity modern 5/6 stage preheater kiln with precalciner at one end and efficient clinker cooler at the other, a specific mention may be made of the advent of two-support kiln systems. Compared with the traditional three-support kilns, the two-support kilns offers the following advantages: saving of space, reduced kiln surface heat loss, lower machine weight and less foundation requirements, elimination of kiln girth gear and reduced number of supporting rollers, lower risks of kiln shell ovality and misalignment of kilns. Hence, the general acceptance of two-support kilns is likely to increase.
The second notable development is the introduction of low-NOx burners, based on the principle of staged combustion. Further, the preheater-precalciner system can now be tailored to suit the primary and secondary fuels used for burning operation. It is possible to install low-NOx calciner with longer residence time, calciner with ignition module for ignition in pure air, or calciner with an integrated chamber for ignition of fuel in pure air at high temperature. It is also possible to introduce in the system a specially designed combustion chamber, such as the ‘Hotdisc’ of FLS, for alternative difficult-to-burn lumpy fuels.
The third important development is the secondary abatement technology for NOx with selective non-catalytic reduction. We also see more efficient on-line systems for SOx abatement. Similarly, secondary abatement systems for VOC will find application, where necessary.Which are the technological developments of significance in the grinding process?
For the comminution equipment the development of construction materials with high wear resistance is of great significance. In roller mills, where there are contradictory demands of both ductility and hardness, the new materials provide longer life with reduced maintenance. An example of the new material is the double casting for roller tyres, in which high-chromium alloy inserts or bars are incorporated into a ductile iron base. The second example is a metal matrix composite in which the high-chromium alloy is reinforced with ceramic particles. The layer of ceramic particles is evenly distributed over the surface in a honeycomb pattern.
The surfaces of roll presses are also vulnerable to damage and hence, like the VRMs, the main aim of continued design development for roll presses has been to achieve higher operational reliability of the surfaces. Using wearing parts of chilled cast material, or the composite material build-up with buffer layers with a wear-resistant top layer, or fabrication of two-piece grinding rolls consisting of a shaft with shrunk-on tyre with welded hard layer as armour are some of the illustrations of these developments.
In addition to the material development for the mill systems, the progress in the commercialisation of ‘horomills’ is worth noting. More than 50 industrial references are now available globally. The tentative single mill capacity for raw meal and normal Portland cement ranges up to 180 t/h and 425 t/h respectively. Two mills installed together can raise the corresponding output levels to 680 t/h and 280 t/h.
The horomill covers the same application fields as conventional ball mill, VRMs and roll presses and the industrial operations have shown energy savings ranging from 35per cent to 60 per cent. Since the horomills have compact integrated drives like those of ball mills, it is comparatively easy to install within a limited space. The system includes auxiliary equipment such as the classifier, filter and bucket elevator. One of the advantages of a horomill seems to be its production flexibility, thanks to the small quantity of material in grinding and separating circuit.What are your observations on the present trends of process control and
‘expert systems’?
The control systems in the modern plants consist of human-machine interfaces, control software, and programmable logic controllers. They include data packages that can bring out trends of control parameters, alarm provisions and even log
details of shift operators. These packages have large flexibilities to change the graphics and control logic and the unit processes are controlled from a central control room.
The process instrumentation has expanded considerably and computer models are used to operate complex processes. Fuzzy-type or rules-based logic gained wide popularity in the 1990s and its use is continuing more extensively. Kiln optimisation and mill control are all predominantly based on rules-based fuzzy. However, after being on the fringe for many years, the latest versions of neural net technology and model-based predictive techniques are coming to the fore as competitive options.
The expert packages such as ABB Expert Optimiser/Linkman with logical dynamic modelling tools, FLS Automation ECS/ProcessExpert integrating camera signals and soft sensors, Pavillion8 MPC, Powitec PIT Indicator/Navigator. Lafarge LUCIE, Polexpert KCE/MCE are some of the advanced systems in the market. The ramp-up in the market for expert systems in future would depend more and more on integration with high-quality soft sensors of in-process materials, camera signals, on-line particle-size analysers, etc. Further, many supervisors and laboratory managers have started making use of remote access software to communicate and to provide assistance to the plant.
The next phase of control strategies seems to be heading towards intelligent field devices that use self-diagnostics and can electronically communicate specific instructions to the maintenance set-up of the plant. There is no doubt that technologically the plant control systems are progressing quite rapidly and are turning out to be more sophisticated.Do you foresee any disruptive technology coming to the cement industry?
Disruptive technologies can come from researches in two directions – one, developing new manufacturing processes for Portland cement and, another, new cement that is generically different from Portland cement. As far as the manufacturing process is concerned, the rotary kiln technology has become deep-rooted in practice and created a firm position for itself with preheater-precalciner subsystems for large-scale Portland clinker production.
Several alternative processes have been attempted during the last four decades, which include vertical shaft kilns, fluidised-bed process, conveyor kilns, microwave heating, radiation synthesis, sol-gel process, melting and quenching and a few other options. Excepting the vertical shaft kiln technology and the fluidised-bed process, all other routes for clinker making have remained in the realm of academic research. Industrialisation of the vertical shaft kiln technology flourished in some countries but ultimately it lost ground to the rotary kiln technology in respect of viability and scale of operation.
Similarly, the fluidised-bed process has been used for small capacity plants; engineering designs have been prepared up to 3000 t/d capacity, but its competitiveness with large-scale clinker making in rotary kilns could not be established so far. Hence, in manufacturing terms, no disruptive technologies can at present be forecast.
For alternative binders the research has been continuing almost since the Portland cement was born. The persistent research efforts led to the invention of three new generic cements, viz., calcium aluminate cement, calcium sulfo-aluminate-belite cement, and alinite cement. All the three binders have certain merits that are not found in Portland cements but they have certain serious shortcomings, which prevent them to qualify as alternatives to Portland cements.
Calcium aluminate cement shows retrogression of strength at higher temperatures, calcium sulfo-aluminate cement requires high-cost raw materials and alinite cement has the strong probability of releasing chlorine during hydration. All these binders are good for niche applications and not for substituting Portland cements as all-purpose structural cements.
Hydraulic cements based on magnesium oxide have recently been claimed to offer great potential for reducing CO2 emission. These binders are in the process of development and use either magnesium carbonate or magnesium silicate as the raw material. It seems that this direction of development has considerable potential for scaling up and commercialisation. There has also been a considerable research on the manufacture of cement and concrete by carbonation instead of hydration.
One trend of development in this category uses either seawater or brine as raw material and another direction is to synthesise a low-calcium silicate clinker. In both the research directions the objective is to recycle CO2 from the captured flue gases for carbonation. The global effectiveness of this approach will depend on the extent to which a circular economy for CO2 develops. The environmental compulsions for CO2 recycling with value addition cannot be ignored, particularly in view of the fact that the known approach of CO2 capture and sequestration is unviable for the cement manufacturing process.
Looking at the overall scenario of product development, one may arrive at the conclusion that no disruption in Portland cement manufacture is predicted as of now. Hence, the production of blended cements with supplementary cementing materials will continue globally. Some niche markets will be served by the new binders and, more particularly, by the belite-rich Portland cement, calcium sulfo-aluminate cement, calcium aluminate formulations, alinite cement, and carbonated binders and concrete. The emergence of magnesia-based cements should not be lost sight of in this melee.Dr Anjan K Chattejee is an international personality in cement, and is presently associated with development of LC3 cement and advisor to Pidilite industries. He is Former Wholetime Director of ACC Ltd, Mumbai and Chairman, Conmat Technologies Pvt Ltd, Kolkata.
You may like
Concrete
Redefining Efficiency with Digitalisation
Published
23 hours agoon
February 20, 2026By
admin
Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.
The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.
The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.
Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.
Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.
Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.
Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.
Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.
About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe, has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.
Concrete
Digital Pathways for Sustainable Manufacturing
Published
24 hours agoon
February 20, 2026By
admin
Dr Y Chandri Naidu, Chief Technology Officer, Nextcem Consulting highlights how digital technologies are enabling Indian cement plants to improve efficiency, reduce emissions, and transition toward sustainable, low-carbon manufacturing.
Cement manufacturing is inherently resource- and energy-intensive due to high-temperature clinkerisation and extensive material handling and grinding operations. In India, where cement demand continues to grow in line with infrastructure development, producers must balance capacity expansion with sustainability commitments. Energy costs constitute a major share of operating expenditure, while process-related carbon dioxide emissions from limestone calcination remain unavoidable.
Traditional optimisation approaches, which are largely dependent on operator experience, static control logic and offline laboratory analysis, have reached their practical limits. This is especially evident when higher levels of alternative fuel and raw materials (AFR) are introduced or when raw material variability increases.
Digital technologies provide a systematic pathway to manage this complexity by enabling
real-time monitoring, predictive optimisation and integrated decision-making across cement manufacturing operations.
Digital cement manufacturing is enabled through a layered architecture integrating operational technology (OT) and information technology (IT). At the base are plant instrumentation, analysers, and automation systems, which generate continuous process data. This data is contextualised and analysed using advanced analytics and AI platforms, enabling predictive and prescriptive insights for operators and management.
Digital optimisation of energy efficiency
- Thermal energy optimisation
The kiln and calciner system accounts for approximately 60 per cent to 65 per cent of total energy consumption in an integrated cement plant. Digital optimisation focuses on reducing specific thermal energy consumption (STEC) while maintaining clinker quality and operational stability.
Advanced Process Control (APC) stabilises critical parameters such as burning zone temperature, oxygen concentration, kiln feed rate and calciner residence time. By minimising process variability, APC reduces the need for conservative over-firing. Artificial intelligence further enhances optimisation by learning nonlinear relationships between raw mix chemistry, AFR characteristics, flame dynamics and heat consumption.
Digital twins of kiln systems allow engineers to simulate operational scenarios such as increased AFR substitution, altered burner momentum or changes in raw mix burnability without operational risk. Indian cement plants adopting these solutions typically report STEC reductions in the range of 2 per cent to 5 per cent. - Electrical energy optimisation
Electrical energy consumption in cement plants is dominated by grinding systems, fans and material transport equipment. Machine learning–based optimisation continuously adjusts mill parameters such as separator speed, grinding pressure and feed rate to minimise specific power consumption while maintaining product fineness.
Predictive maintenance analytics identify inefficiencies caused by wear, fouling or imbalance in fans and motors. Plants implementing plant-wide electrical energy optimisation typically achieve
3 per cent to 7 per cent reduction in specific power consumption, contributing to both cost savings and indirect CO2 reduction.
Digital enablement of AFR
AFR challenges in the Indian context: Indian cement plants increasingly utilise biomass, refuse-derived fuel (RDF), plastic waste and industrial by-products. However, variability in calorific value, moisture, particle size, chlorine and sulphur content introduces combustion instability, build-up formation and emission risks.
Digital AFR management: Digital platforms integrate real-time AFR quality data from online analysers with historical kiln performance data. Machine learning models predict combustion behaviour, flame stability and emission trends for different AFR combinations. Based on these predictions, fuel feed distribution, primary and secondary air ratios, and burner momentum are dynamically adjusted to ensure stable kiln operation. Digitally enabled AFR management in cement plants will result in increased thermal substitution rates by 5-15 percentage points, reduced fossil fuel dependency, and improved kiln stability.
Digital resource and raw material optimisation
Raw mix control: Raw material variability directly affects kiln operation and clinker quality. AI-driven raw mix optimisation systems continuously adjust feed proportions to maintain target chemical parameters such as Lime Saturation Factor (LSF), Silica Modulus (SM), and Alumina Modulus (AM). This reduces corrective material usage and improves kiln thermal efficiency.
Clinker factor reduction: Reducing clinker factor through supplementary cementitious materials (SCMs) such as fly ash, slag and calcined clay is a key decarbonisation lever. Digital models simulate blended cement performance, enabling optimisation of SCM proportions while maintaining strength and durability requirements.
Challenges and strategies for digital adoption
Key challenges in Indian cement plants include data quality limitations due to legacy instrumentation, resistance to algorithm-based decision-making, integration complexity across multiple OEM systems, and site-specific variability in raw materials and fuels.
Successful digital transformation requires strengthening the data foundation, prioritising high-impact use cases such as kiln APC and energy optimisation, adopting a human-in-the-loop approach, and deploying modular, scalable digital platforms with cybersecurity by design.
Future Outlook
Future digital cement plants will evolve toward autonomous optimisation, real-time carbon intensity tracking, and integration with emerging decarbonisation technologies such as carbon capture, utilisation and storage (CCUS). Digital platforms will also support ESG reporting and regulatory compliance.
Digital pathways offer a practical and scalable solution for sustainable cement manufacturing in India. By optimising energy consumption, enabling higher AFR substitution and improving resource efficiency, digital technologies deliver measurable environmental and economic benefits. With appropriate data infrastructure, organisational alignment and phased implementation, digital transformation will remain central to the Indian cement industry’s low-carbon transition.
About the author:
Dr Y Chandri Naidu is a cement industry professional with 30+ years of experience in process optimisation, quality control and quality assistance, energy conservation and sustainable manufacturing, across leading organisations including NCB, Ramco, Prism, Ultratech, HIL, NCL and Vedanta. He is known for guiding teams, developing innovative plant solutions and promoting environmentally responsible cement production. He is also passionate about mentoring professionals and advancing durable, resource efficient technologies for future of construction materials.

Concrete
Turning Downtime into Actionable Intelligence
Published
2 days agoon
February 19, 2026By
admin
Stoppage Insights instantly identifies root causes and maps their full operational impact.
In cement, mining and minerals processing operations, every unplanned stoppage equals lost production and reduced profitability. Yet identifying what caused a stoppage remains frustratingly complex. A single motor failure can trigger cascading interlocks and alarm floods, burying the root cause under layers of secondary events. Operators and maintenance teams waste valuable time tracing event chains when they should be solving problems. Until now.
Our latest innovation to our ECS Process Control Solution(1) eliminates this complexity. Stoppage Insights, available with the combined updates to our ECS/ControlCenter™ (ECS) software and ACESYS programming library, transforms stoppage events into clear, actionable intelligence. The system automatically identifies the root cause of every stoppage – whether triggered by alarms, interlocks, or operator actions – and maps all affected equipment. Operators can click any stopped motor’s faceplate to view what caused the shutdown instantly. The Stoppage UI provides a complete record of all stoppages with drill-down capabilities, replacing manual investigation with immediate answers.
Understanding root cause in Stoppage Insights
In Stoppage Insights, ‘root cause’ refers to the first alarm, interlock, or operator action detected by the control system. While this may not reveal the underlying mechanical, electrical or process failure that a maintenance team may later discover, it provides an actionable starting point for rapid troubleshooting and response. And this is where Stoppage Insights steps ahead of traditional first-out alarm systems (ISA 18.2). In this older type of system, the first alarm is identified in a group. This is useful, but limited, as it doesn’t show the complete cascade of events, distinguish between operator-initiated and alarm-triggered stoppages, or map downstream impacts. In contrast, Stoppage Insights provides complete transparency:
- Comprehensive capture: Records both regular operator stops and alarm-triggered shutdowns.
- Complete impact visibility: Maps all affected equipment automatically.
- Contextual clarity: Eliminates manual tracing through alarm floods, saving critical response time.
David Campain, Global Product Manager for Process Control Systems, says, “Stoppage Insights takes fault analysis to the next level. Operators and maintenance engineers no longer need to trace complex event chains. They see the root cause clearly and can respond quickly.”
Driving results
1.Driving results for operations teams
Stoppage Insights maximises clarity to minimise downtime, enabling operators to:
• Rapidly identify root causes to shorten recovery time.
• View initiating events and all affected units in one intuitive interface.
• Access complete records of both planned and unplanned stoppages
- Driving results for maintenance and reliability teams
Stoppage Insights helps prioritise work based on evidence, not guesswork:
• Access structured stoppage data for reliability programmes.
• Replace manual logging with automated, exportable records for CMMS, ERP or MES.(2)
• Identify recurring issues and target preventive maintenance effectively.
A future-proof and cybersecure foundation
Our Stoppage Insights feature is built on the latest (version 9) update to our ACESYS advanced programming library. This industry-leading solution lies at the heart of the ECS process control system. Its structured approach enables fast engineering and consistent control logic across hardware platforms from Siemens, Schneider, Rockwell, and others.
In addition to powering Stoppage Insights, ACESYS v9 positions the ECS system for open, interoperable architectures and future-proof automation. The same structured data used by Stoppage Insights supports AI-driven process control, providing the foundation for machine learning models and advanced analytics.
The latest releases also respond to the growing risk of cyberattacks on industrial operational technology (OT) infrastructure, delivering robust cybersecurity. The latest ECS software update (version 9.2) is certified to IEC 62443-4-1 international cybersecurity standards, protecting your process operations and reducing system vulnerability.
What’s available now and what’s coming next?
The ECS/ControlCenter 9.2 and ACESYS 9 updates, featuring Stoppage Insights, are available now for:
- Greenfield projects.
- ECS system upgrades.
- Brownfield replacement of competitor systems.
Stoppage Insights will also soon integrate with our ECS/UptimeGo downtime analysis software. Stoppage records, including root cause identification and affected equipment, will flow seamlessly into UptimeGo for advanced analytics, trending and long-term reliability reporting. This integration creates a complete ecosystem for managing and improving plant uptime.
(1) The ECS Process Control Solution for cement, mining and minerals processing combines proven control strategies with modern automation architecture to optimise plant performance, reduce downtime and support operational excellence.
(2) CMMS refers to computerised maintenance management systems; ERP, to enterprise resource planning; and MES to manufacturing execution systems.
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Trending News
-
Concrete4 weeks agoAris Secures Rs 630 Million Concrete Supply Order
-
Concrete3 weeks agoNITI Aayog Unveils Decarbonisation Roadmaps
-
Concrete3 weeks agoJK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
-
Economy & Market3 weeks agoBudget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook


