Connect with us

Technology

Technology Trends In Cement Manufacture – Some Salient Features

Published

on

Shares

Anjan K Chattejee, Former Wholetime Director, ACC Ltd, Mumbai and Chairman, Conmat Technologies Pvt Ltd, Kolkata.

Anjan K Chatterjee is an international personality in cement has strong interest in development of new cements. Presently associated with LC3 cement and advisor to Pidilite industries.

What have been the visible technological advancements in cement manufacturing during the last decade?
The cement industry in the world has grown phenomenally in the last decade and the production level of all varieties of Portland cements taken together has crossed 4.0 billion tonnes, which is the largest volume amongst all manmade materials. Such growth has been possible due to considerable advances made in the hardware and software of cement manufacture. The main drivers for these technological advances have so far been the ‘cost’ and ‘quality’ of products.

The technological progress has been multi-dimensional as reflected in the following features:
1.The capacity of a single kiln for clinker making has reached 12000-13000 t/day, although in the recent years there is a trend of installing kilns of lower capacity due to economic and logistics reasons.
2.With automation, instrumentation, computer-aided controls and integration of ‘expert’ systems the man-hours per tonne of cement came down to one or even less, thereby reducing the application of human discretion and increasing the dependence on electronic gadgets.
3.The choice of grinding systems for raw material and clinker has been dependent on the better energy utilization factor, which has led to more extensive adoption of vertical roller mills, high-pressure roll presses and horizontal roller mills.
4.The fourth generation clinker coolers are now available from several suppliers, operating with 75 per cent efficiency of the theoretical maximum.
5.Significant developments have taken place in multi-channel burners, which have been specifically designed for co-incineration of alternative fuels.
6.The efficiency of the thermal process inclusive of raw materials drying has now touched almost 80 per cent of the theoretical maximum.
7.Driven by the rising prices of power and fuel, experiencing concerns about grid reliability, and fulfilling the commitments to sustainable development, the cement industry has taken more interest in ‘waste heat recovery’. While the most common water-steam cycles operate at heat source temperatures as low as 3000C, for heat recovery from still lower temperatures, the Organic Rankin Cycle, utilizing organic compounds as process flows or the Kalina Cycle, using a water-ammonia solution, are now available for implementation in cement plants.
8.For sustainable production, the AFR use has taken deep root in the operational philosophy. Depending on the social conditions, living habits, availability of AFR and its collection systems, the extent of use varies from country to country, although the objective is to maximize its use.
9.Process measures and secondary abatement technologies ensure low emissions of dust, NOx and SOx in all modern plants. Recently additional focus has been laid on emissions of mercury and carbon dioxide. In parallel, there has been significant progress in developing continuous emission monitoring systems.
10.There has been widespread application of computational fluid dynamics (CFD) and of physical simulation and modelling in solving process and design problems.

What are your observations on the progress achieved in reducing the energy consumption in manufacturing?
The global average thermal and electrical energy consumption levels are reportedly 800-850 kcal/kg of clinker and 100-110 kWh/t of cement. Compared to these levels the average specific energy consumption values in India are 725 kcal/kg clinker and 82 kWh/t cement and the corresponding best values obtained are 667 kcal/kg and 68 kWh/t. From these values it appears that globally there is still enough scope for better energy management, while in India the potential of energy conservation is rather limited. In this context, it is important to note that more rigorous environmental norms will, of course, reduce the emission loads but at the cost of energy. Further, stricter specifications of products, more stringent control of particle size requirements, use of non-carbonate alternative materials, etc. are expected to integrate new or additional process measures, which might increase the energy consumption. Hence, the potential of further energy conservation in our country in particular will depend on the future course of product quality and environmental demands. In addition, the limitations of plant vintage, design and layout may act as obstacles in achieving further energy conservation.

Are you satisfied with the research done on low- and off-grade limestone?
While the use of low- or off-grade limestone is not a critical concern in many countries, it is certainly an issue that needs to be dealt with more seriously in our country, as it can create 25-30 per cent additional resource base for the rapidly expanding industry. Limestone having CaO content of less than 42 per cent and limestone containing impurities of high silica or high magnesia or high iron content fall in this category and viable technologies for their use will be of immense economic benefit. Researches in this field, however, are sporadic and academic. The current technologies are limited to ‘sweetening’, wobbling, belt sorting, and froth flotation. The newer technological options of photometric sorting, electrostatic separation, bioleaching, or making products not conforming to the conventional types, continue to be exploratory in their development. On the contrary, utilization of marginal grade limestone by the cement industry deserves a ‘mission’ status in our country. Since dry manufacturing systems can these days co-exist with wet preparation of raw materials, improved froth flotation and bioleaching techniques cannot be ignored. More logical perhaps is to look at new products and new processes, High-belite cement and high-magnesia blended cement are examples of such possibilities. Use of dolomitic limestone for simultaneous manufacture of cement and magnesia is a technology worth re-examining. Broadly speaking, it is time to lay much greater emphasis on research on utilizing low-grade limestone.

What is the status of research for enhancing the use of high-ash coal?
We all know that the cement industry has been a very effective user of high-ash coal. The kiln burners are designed suitably to combust high-ash coal and the plants make use of coal with ash content of 35-40 per cent in most cases. Mixing of coal with varying ash contents has also been in practice to facilitate the use of high-ash coal.

Several attempts were made in the past to install small captive coal washing units in a few cement plants to upgrade the quality of coal for process consumption but not with success due to economic and operational reasons. A few pit-head coal washing plants are operating in the country to de-ash non-coking coal prior to supply to the cement units and other users. The aforesaid measures do not seem to be adequate to meet the future demand of clean coal. Hence, for enhancing the use of high-ash coal further it would be important to integrate the technology of coal gasification with the cement manufacturing process. Technologies for coal gasification are decades old but their integration with the cement manufacturing process needs specific development with regard to the operational features and economic viability. It is pertinent to mention here that coal gasification is attractive from the economic and energy security perspectives but the overall carbon intensity is much higher than coal mining. The technology is also water-intensive. Nevertheless, the abundantly available resource of high-ash coal in the country needs to be considered an object of priority in meeting the energy demand by adopting such a technology. It is interesting to note that China has laid out plans to produce 50 billion cubic metres of gas from coal by 2020, enough to satisfy more than 20 per cent of total gas demand. Despite the stated environmental shortfalls, the technology has been introduced in order to exploit the stranded coal deposits sitting thousands of kilometres away from the main industrial consuming centres, as transportation of gas is deemed cheaper than transporting solid fuel. It might also be pertinent to mention here that in some countries the adverse environmental problems of gasification technology has led to considering the alternative ‘underground coal gasification’ process. In brief, the process involves pumping oxygen and steam through a small borehole into the coal seam to cause local combustion. The synthetic gas product consisting of hydrogen, methane, carbon monoxide and carbon dioxide is siphoned off through a second borehole and is collected, transported, stored and used. It is reported that the underground coal gasification process substantially reduces the CO2 emission. While on the subject, another widely known clean coal technology of ‘coal bed methane’ deserves a mention. The process is relevant for coal deposits that are too deep to mine. Water is sucked out of the seam and methane attached to the surface of the coal seam is freed and then collected. The CBM technology is said to have fundamentally changed the dynamics of the gas industry in Australia.

Considering the plethora of options for clean coal technology, it is important for the cement industry to be more involved in coal research but in a co-ordinated national strategy, as it cannot be handled at the individual company level.

What is the progress in real-time analysis for QC in cement plants?
Recent developments in the use of x-ray diffraction are changing the traditional methods of quality and process control, as they have the ability to measure mineral phases or compounds formed directly in real time. Cement and clinker production involves chemical reactions to produce precisely controlled blends of phases with specific properties. So far there has been overwhelming dependence on either off-line or on-line oxide or elemental analysis of raw or in-process materials for QC. Methods and equipment are now available for continuous quantitative on-stream analysis of the mineral or phase composition of cement and clinker. The instrument is a stand-alone piece of equipment, which is installed at the sampling point. A sample for analysis is extracted from the process stream and after due preparation on-line the sample passes through the x-ray beam. The diffracted x-rays are collected over 0 to 1200 by a detector. The Rietveld structural refinement technique is applied to analyse the resulting diffraction pattern. The analysis of the moving stream is done in close frequency of, say, once every minute. All analysis results are communicated directly to the plant PLC system. The real-time measurement of the mineral composition of cement and clinker for process control is a paradigm shift for the cement industry.

The discernible benefits of using on-stream x-ray diffraction are the following:

Control of kiln burner based on free lime, clinker reactivity, alkali and sulphur contents
Control of cement mill separators and feed rates and proportions to achieve consistent cement strength at minimum power consumption
Control of gypsum dehydration through cement mill temperature to give consistent setting times
Control of mill weigh-feeders for different feed materials.

The net advantages of implementation of such on-line QC systems are the optimum performance and cost, reduced risk of product failure and consequent marketing benefits.

Another development in the on-stream analysis, apart from the widely used bulk analyser based on ?-radiation, is the application of infrared spectra that are provided by the stabilized white light source. The light illuminates the target bulk material to be analysed as it passes the unit on an existing conveyor belt. The infrared radiation excites vibrational oscillations of the molecular bonds in the material under test, which results in reflection and absorption spectra that are characteristic of minerals being analysed. The Near Infrared (NIR) ranges are applied for analysing limestone materials. It is claimed that the IR based on-line bulk analyser shows better performance for the cement raw material constituents than the traditional ?-ray equipment. One additional advantage in this new development is the avoidance of potentially hazardous excitation sources.

What would you like to highlight as significant technological steps in pyro-processing?
Over and above the standard features of a large-capacity modern 5/6 stage preheater kiln with precalciner at one end and efficient clinker cooler at the other, a specific mention may be made of the advent of two-support kiln systems. Compared with the traditional three-support kilns, the two-support kilns offers the following advantages: saving of space, reduced kiln surface heat loss, lower machine weight and less foundation requirements, elimination of kiln girth gear and reduced number of supporting rollers, lower risks of kiln shell ovality and misalignment of kilns. Hence, the general acceptance of two-support kilns is likely to increase.

The second notable development is the introduction of low-NOx burners, based on the principle of staged combustion. Further, the preheater-precalciner system can now be tailored to suit the primary and secondary fuels used for burning operation. It is possible to install low-NOx calciner with longer residence time, calciner with ignition module for ignition in pure air, or calciner with an integrated chamber for ignition of fuel in pure air at high temperature. It is also possible to introduce in the system a specially designed combustion chamber, such as the ‘Hotdisc’ of FLS, for alternative difficult-to-burn lumpy fuels.

The third important development is the secondary abatement technology for NOx with selective non-catalytic reduction. We also see more efficient on-line systems for SOx abatement. Similarly, secondary abatement systems for VOC will find application, where necessary.

Which are the technological developments of significance in the grinding process?
For the comminution equipment the development of construction materials with high wear resistance is of great significance. In roller mills, where there are contradictory demands of both ductility and hardness, the new materials provide longer life with reduced maintenance. An example of the new material is the double casting for roller tyres, in which high-chromium alloy inserts or bars are incorporated into a ductile iron base. The second example is a metal matrix composite in which the high-chromium alloy is reinforced with ceramic particles. The layer of ceramic particles is evenly distributed over the surface in a honeycomb pattern.

The surfaces of roll presses are also vulnerable to damage and hence, like the VRMs, the main aim of continued design development for roll presses has been to achieve higher operational reliability of the surfaces. Using wearing parts of chilled cast material, or the composite material build-up with buffer layers with a wear-resistant top layer, or fabrication of two-piece grinding rolls consisting of a shaft with shrunk-on tyre with welded hard layer as armour are some of the illustrations of these developments.

In addition to the material development for the mill systems, the progress in the commercialisation of ‘horomills’ is worth noting. More than 50 industrial references are now available globally. The tentative single mill capacity for raw meal and normal Portland cement ranges up to 180 t/h and 425 t/h respectively. Two mills installed together can raise the corresponding output levels to 680 t/h and 280 t/h. The horomill covers the same application fields as conventional ball mill, VRMs and roll presses and the industrial operations have shown energy savings ranging from 35per cent to 60 per cent. Since the horomills have compact integrated drives like those of ball mills, it is comparatively easy to install within a limited space. The system includes auxiliary equipment such as the classifier, filter and bucket elevator. One of the advantages of a horomill appears to be its production flexibility, thanks to the small quantity of material in the grinding and separating circuit.

What are your observations on the present trends of process control and ‘expert systems’?
The control systems in the modern plants consist of human-machine interfaces, control software, and programmable logic controllers. They include data packages that can bring out trends of control parameters, alarm provisions and even log details of shift operators. These packages have large flexibilities to change the graphics and control logic and the unit processes are controlled from a central control room. The process instrumentation has expanded considerably and computer models are used to operate complex processes. Fuzzy-type or rules-based logic gained wide popularity in the 1990s and its use is continuing more extensively. Kiln optimization and mill control are all predominantly based on rules-based fuzzy. However, after being on the fringe for many years, the latest versions of neural net technology and model-based predictive techniques are coming to the fore as competitive options. The expert packages such as ABB Expert Optimiser/Linkman with logical dynamic modelling tools, FLS Automation ECS/ProcessExpert integrating camera signals and soft sensors, Pavillion8 MPC, Powitec PIT Indicator/Navigator. Lafarge LUCIE, Polexpert KCE/MCE are some of the advanced systems in the market. The ramp-up in the market for expert systems in future would depend more and more on integration with high-quality soft sensors of in-process materials, camera signals, on-line particle-size analysers, etc.

Further, many supervisors and laboratory managers have started making use of remote access software to communicate and to provide assistance to the plant. The next phase of control strategies seems to be heading towards intelligent field devices that use self-diagnostics and can electronically communicate specific instructions to the maintenance set-up of the plant. There is no doubt that technologically the plant control systems are progressing quite rapidly and are turning out to be more sophisticated.

Do you foresee any disruptive technology coming to the cement industry?
Disruptive technologies can come from researches in two directions – one, developing new manufacturing processes for Portland cement and, another, new cement that is generically different from Portland cement. As far as the manufacturing process is concerned, the rotary kiln technology has become deep-rooted in practice and created a firm position for itself with preheater-precalciner subsystems for large-scale Portland clinker production. Several alternative processes have been attempted during the last four decades, which include vertical shaft kilns, fluidized-bed process, conveyor kilns, microwave heating, radiation synthesis, sol-gel process, melting & quenching and a few other options. Excepting the vertical shaft kiln technology and the fluidized-bed process, all other routes for clinker making have remained in the realm of academic research. Industrialization of the vertical shaft kiln technology flourished in some countries but ultimately it lost ground to the rotary kiln technology in respect of viability and scale of operation. Similarly, the fluidized-bed process has been used for small capacity plants; engineering designs have been prepared up to 3000 t/d capacity, but its competitiveness with large-scale clinker making in rotary kilns could not be established so far. Hence, in manufacturing terms, no disruptive technologies can at present be forecast.

For alternative binders the research has been continuing almost since the Portland cement was born. The persistent research efforts led to the invention of three new generic cements, viz., calcium aluminate cement, calcium sulfo-aluminate-belite cement, and alinite cement. All the three binders have certain merits that are not found in Portland cements but they have certain serious shortcomings, which prevent them to qualify as alternatives to Portland cements. Calcium aluminate cement shows retrogression of strength at higher temperatures, calcium sulfo-aluminate cement requires high-cost raw materials and alinite cement has the strong probability of releasing chlorine during hydration. All these binders are good for niche applications and not for substituting Portland cements as all-purpose structural cements.

Hydraulic cements based on magnesium oxide have recently been claimed to offer great potential for reducing CO2 emission. These binders are in the process of development and use either magnesium carbonate or magnesium silicate as the raw material. It seems that this direction of development has considerable potential for scaling up and commercialization. There has also been a considerable research on the manufacture of cement and concrete by carbonation instead of hydration. One trend of development in this category uses either seawater or brine as raw material and another direction is to synthesize a low-calcium silicate clinker. In both the research directions the objective is to recycle CO2 from the captured flue gases for carbonation. The global effectiveness of this approach will depend on the extent to which a circular economy for CO2 develops. The environmental compulsions for CO2 recycling with value addition cannot be ignored, particularly in view of the fact that the known approach of CO2 capture and sequestration is unviable for the cement manufacturing process.

Looking at the overall scenario of product development, one may arrive at the conclusion that no disruption in Portland cement manufacture is predicted as of now. Hence, the production of blended cements with supplementary cementing materials will continue globally. Some niche markets will be served by the new binders and, more particularly, by the belite-rich Portland cement, calcium sulfo-aluminate cement, calcium aluminate formulations, alinite cement, and carbonated binders and concrete. The emergence of magnesia-based cements should not be lost sight of in this melee.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Optimising plant performance

Published

on

By

Shares

As India’s cement industry heads for unprecedented growth, the importance of smart, sustainable and strategic lubrication is gaining ground. From reducing downtime and enhancing energy efficiency to enabling predictive maintenance, lubricants are transforming plant performance. ICR explores how advanced lubrication solutions are becoming critical enablers of reliability, resilience and environmental stewardship in the cement sector.

The Indian cement industry, a cornerstone of the nation’s infrastructure development, is experiencing significant growth. In 2023, India’s cement production reached 374.55 million tonnes, marking a 6.83 per cent year-on-year growth. Projections indicate that the market size will expand from 3.96 billion tonnes in 2023 to 5.99 billion tonnes by 2032, reflecting a compound annual growth rate (CAGR) of 4.7 per cent during 2024-32. This expansion underscores the increasing demand for efficient and sustainable operations within the sector.
In cement manufacturing, equipment such as kilns, crushers, vertical mills, ball mills, conveyors and fans operate under extreme temperatures, heavy loads and high dust exposure. These demanding conditions make proper lubrication not just essential, but mission-critical. Selecting the right type of lubricant and maintaining an effective lubrication regime can drastically improve machine uptime, reduce maintenance costs, and enhance plant safety. In many cases, lubricant-related failures account for a significant proportion of unplanned downtime, underscoring the value of a well-structured lubrication strategy.
The Indian cement sector is also undergoing a technological transformation, with increasing emphasis on automation, predictive maintenance and energy efficiency. In this evolving landscape, lubricants are no longer just consumables—they are enablers of performance, longevity and sustainability. With the growing availability of advanced lubricants and condition-monitoring technologies, Indian cement plants have the opportunity to optimise their lubrication practices in line with global standards. Additionally, tightening environmental regulations and sustainability goals are driving the shift toward eco-friendly lubricants and responsible usage practices, making lubrication management a key factor in both operational and environmental performance.
As the industry moves forward, there is a growing realisation that lubrication excellence can be a competitive differentiator. This article explores the critical role of lubricants in cement manufacturing, the latest technological advancements, the environmental considerations shaping lubricant use, and the challenges and opportunities for cement producers in India aiming to maximise equipment reliability and operational efficiency.

The role of lubricants in cement manufacturing
Cement manufacturing involves heavy-duty machinery operating under extreme conditions—high temperatures, heavy loads and continuous operations. Lubricants are essential in minimising friction, reducing wear and tear, and preventing equipment failures. Proper lubrication ensures that components such as kilns, crushers and grinding mills function optimally, thereby reducing downtime and maintenance costs.
Moreover, the integration of advanced lubrication technologies has enabled predictive maintenance strategies. By monitoring lubricant conditions, operators can anticipate equipment issues before they escalate, allowing for timely interventions and uninterrupted production cycles.
“Lubricants play a crucial role in enhancing the efficiency and reliability of cement plant operations. High-performance lubricants reduce friction and wear in critical machinery such as crushers, kilns, mills, and conveyors, ensuring smoother operation and extending equipment life. By minimising mechanical breakdowns and unplanned downtime, they contribute to consistent production and lower maintenance costs. Additionally, specialised lubricants designed to withstand high temperatures, heavy loads, and dusty environments help maintain optimal performance under demanding conditions. Proper lubrication also improves energy efficiency by reducing power loss due to friction. In essence, the right lubrication strategy not only enhances equipment reliability and operational uptime but also supports overall cost-effectiveness and productivity in cement manufacturing,” says Hiten Ved, Sales Head, Royal Petro Specialities.
In addition to enhancing equipment longevity, lubricants are pivotal in ensuring uninterrupted production cycles. Cement manufacturing is a 24/7 operation, and any unexpected downtime due to mechanical failure can lead to significant financial losses. Lubricants with high thermal stability and oxidation resistance prevent the breakdown of oil films under intense heat, especially in applications like rotary kilns, vertical roller mills and clinker coolers. By reducing the likelihood of equipment seizures or breakdowns, these lubricants act as silent enablers of plant reliability and uptime.
Gaurav Mathur, Director and Chief Executive Officer, Global Technical Services, says, “Wall paintings in tombs show workers using water to move statues, indicating early recognition of lubrication. By 1400 BC, animal fat was used to lubricate chariot axles, ever since then mankind has been relentlessly working to improvise the efficiency of lubricants. Tribological advancements have propelled industrialisation in the world. Machines working in demanding environment need better performance, however merely just better lubricant that is made from highly refined base oils is not good enough. Mineral and synthetic base oils and advanced additives chemistry have given birth to advanced lubricants. These lubricants have better performance characteristics and longer service life.”
“However, the way lubrication is done is more critical and if lubrication is not performed in a proper way, highest performing lubricants would also under perform compared to the lowest specification product. Total Lubrication Management has to be implemented for better machine reliability, equipment availability and lower down time. Implementation of TLM has paid rich dividends in the industry. Pillars of TLM being, contamination free lubrication, regular testing of lubricants to access the lubricant and machine condition and regeneration of lubricants,” he adds.
Lubricants contribute directly to energy efficiency. Friction losses within rotating equipment can account for up to 30 per cent of the total energy consumption in certain plant areas. Advanced synthetic lubricants, with low traction coefficients and superior film strength, reduce this internal resistance, thus improving mechanical efficiency and lowering the plant’s overall energy footprint. As Indian cement plants pursue energy benchmarking and ISO 50001 certifications, the use of high-performance lubricants becomes an integral strategy in achieving energy conservation goals.
“The cement industry has many lubrication points that require NLGI Grade 2 grease that can be used in high temperature applications. These may include bearings on vibrating screens and roller mills; rotating joints on grinding units; and various shafts, pivots, and metal to metal contact points found throughout the plant. CorrLube™ VpCI® Lithium EP Grease has a dropping point of 360 °F (182 °C), allowing it to be used in a broad range of temperatures. For areas that need a slightly harder grease of NLGI Grade 3, EcoLine® Biobased Grease offers a
similar dropping point of 365 °F (185 °C), explain Julie Holmquist, Marketing Content Writer,
Cortec Corporation.

Market dynamics: growth and trends
The Indian industrial lubricants market was valued at $13.05 billion in 2024 and is projected to reach $ 20.72 billion by 2033, growing at a CAGR of 4.12 per cent. This growth is driven by the expanding industrial sector, increased mechanisation, and the adoption of advanced machinery requiring specialised lubricants.
In the cement sector specifically, the demand for high-performance lubricants is rising. The lubricants for cement market are estimated to be $ 2.5 billion in 2024 and is expected to reach $ 3.9 billion by 2033, at a CAGR of 5.3 per cent from 2026 to 2033. This surge is attributed to the need for lubricants that can withstand harsh operating conditions and enhance equipment reliability.

Advancements in lubrication technology
Recent years have witnessed significant advancements in lubrication technology tailored for the cement industry. Synthetic lubricants, known for their superior thermal stability and longer service life, are increasingly being adopted. These lubricants perform effectively under extreme temperatures and heavy loads, common in cement manufacturing processes.
Additionally, the development of bio-based lubricants offers environmentally friendly alternatives without compromising performance. These lubricants, derived from renewable sources, reduce the environmental footprint and align with global sustainability goals. Their biodegradability and low toxicity make them suitable for applications where environmental considerations are paramount.
Smart lubrication systems are another breakthrough in the cement industry. These systems use IoT-enabled sensors and controllers to monitor lubricant condition in real time—tracking parameters such as viscosity, temperature, contamination levels and usage. This data is integrated into plant maintenance software to automate lubricant replenishment and alert operators to potential failures. Predictive lubrication ensures that each component receives the right amount of lubricant at the right time, minimising waste, reducing manual intervention, and extending machinery life.
“Many VpCI® products can be applied to surfaces with minimal pre-cleaning, and the protective VpCI® layer typically does not need to be removed before equipment is put back into service. VpCI® ‘s save significant labor, time, and associated costs compared to methods that require extensive surface preparation (e.g., sandblasting) and post-application cleaning or degreasing. This allows for faster startup after maintenance,” elaborates Ana Juraga, Content Writer, Cortec Corporation.
Furthermore, Original Equipment Manufacturers (OEMs) and lubricant suppliers are collaborating to develop application-specific lubricants tailored to the unique operating conditions of cement manufacturing units. For example, gear oils designed for high-load kilns or open gear systems now come with superior Extreme Pressure (EP) additives and anti-wear properties to cope with shock loading and variable speed operations. These co-developed solutions not only enhance mechanical reliability but also ensure compatibility with diverse materials used in modern cement equipment, ensuring peak performance in both greenfield and brownfield plants.

Sustainability and environmental considerations
The cement industry is under increasing pressure to reduce its environmental impact. Lubricants contribute to this goal by enhancing energy efficiency and reducing emissions. High-quality lubricants decrease friction, leading to lower energy consumption and, consequently, reduced greenhouse gas emissions.
Furthermore, the use of long-life lubricants minimises the frequency of oil changes, thereby reducing waste generation and disposal issues. The shift towards bio-based and recyclable lubricants also supports circular economy principles, promoting resource efficiency and environmental stewardship.
A report by Klüber Lubrication India suggests that sustainability continues to be a key focus for industries, the Securities and Exchange Board of India (SEBI) has mandated Business Responsibility and Sustainability Reporting (BRSR) for the top 1,000 listed companies. This framework requires organisations to disclose their environmental, social and governance (ESG) initiatives, including energy conservation, emission reductions and resource optimisation. Beyond compliance, BRSR reporting allows companies to showcase their sustainability leadership and build investor confidence. Organisations that proactively address sustainability challenges are better positioned to attract long-term investors, secure financing, and maintain a competitive advantage in an evolving regulatory landscape.
The report also states that their high-performance synthetic lubricants play a crucial role in helping cement manufacturers meet these regulatory requirements by enhancing energy efficiency and reducing CO2 emissions in critical machinery such as vertical roller mills (VRMs) and main gearboxes. By adopting our energy-efficient solutions, companies can strengthen their BRSR compliance while achieving tangible operational benefits.
An emerging trend in the lubricant industry is the formulation of biodegradable lubricants specifically tailored for heavy industries like cement manufacturing. These eco-friendly alternatives are made from renewable base stocks and are designed to degrade naturally without leaving behind harmful residues. In environmentally sensitive zones or operations with high spill risk, such as open gear applications or hydraulic systems exposed to the elements, biodegradable lubricants offer a sustainable solution that aligns with stricter environmental regulations and the growing emphasis on corporate social responsibility (CSR) in India’s industrial sector.
KB Mathur, Founder and Director, Global Technical Services, says, “In the world of industrial machinery, lubricating oils while essential; are often misunderstood in terms of their life cycle. When oils are used in machinery, they don’t simply ‘DIE’. Instead, they become contaminated with moisture (water) and solid contaminants like dust, dirt and wear debris. These contaminants degrade the oil’s effectiveness but do not render it completely unusable. Used lubricants can be regenerated via advanced filtration processes/systems and recharged with the use of performance enhancing additives hence restoring them. These oils are brought back to ‘As-New’ levels. This new fresher lubricating oil is formulated to carry out its specific job providing heightened lubrication and reliable performance of the assets with a view of improved machine condition. Hence, contributing to not just cost savings but leading to magnified productivity, and diminished environmental stress.”
Lubricant manufacturers are increasingly focusing on circular economy principles, offering oil analysis, filtration and recycling services that extend lubricant life and minimise waste. Used oil regeneration programs not only reduce disposal costs but also help cement plants meet regulatory norms under the Hazardous Waste Management Rules of India. This closed-loop approach not only lowers the environmental burden but also enhances economic efficiency—making sustainability a dual benefit for operational and ecological performance. As cement companies work towards science-based targets and carbon neutrality, lubricant selection and management play a more strategic role in meeting these broader sustainability commitments.

Challenges and opportunities
Despite the benefits, the adoption of advanced lubricants in the Indian cement industry faces challenges. These include the higher initial costs of synthetic and bio-based lubricants and a lack of awareness about their long-term benefits. Additionally, the integration of lubrication management systems requires investment in training and infrastructure.
However, these challenges present opportunities for innovation and collaboration. Manufacturers
can work closely with lubricant suppliers to develop customised solutions that meet specific operational needs. Moreover, government incentives and regulatory frameworks promoting sustainable practices can accelerate the adoption of advanced lubrication technologies.
Another key challenge is the limited awareness and technical training available at the plant level regarding proper lubrication practices. Many maintenance teams still rely on outdated methods such as manual greasing or fixed-interval lubrication schedules, which often lead to over-lubrication, under-lubrication or lubricant contamination. This results in premature equipment wear and higher operating costs. There is a growing need for skill development programmes and collaboration with lubricant suppliers to train technicians on best practices, condition-based monitoring, and the use of smart lubrication systems.
“Oil in the machine is like blood in the human body. There is no rotating machine that works without lubricants (liquid, semi liquid or solid). Based on the machine component, type of lubricant is used to minimise the mechanical changes in the machine. Lubricant being the product that separates two or more materials under movement. With modern machines being more and more sophisticated and tolerances being finer than before, cleanliness of Lubricants is critical, would the source of contamination be internal wear or external contamination. These contaminations rupture and compromises lubricant film, contamination particles when come in-between the fine tolerances, become cause of catastrophic failure,” expounds Gaurav Mathur.
At the same time, the industry is witnessing an opportunity to leverage digitalisation in lubrication management. Advanced lubrication tracking tools, coupled with ERP and maintenance software, can now offer real-time visibility into lubricant consumption, scheduling and health diagnostics. Integration of AI-powered analytics helps predict equipment failure based on lubricant data, enabling a shift from reactive to predictive maintenance. For Indian cement manufacturers aiming to digitise plant operations as part of Industry 4.0, lubrication is an ideal entry point that delivers immediate ROI and long-term gains in efficiency, asset life and sustainability.

Conclusion
As the Indian cement industry continues its trajectory of growth, the role of high-performance lubricants in ensuring operational reliability, energy efficiency and cost savings cannot be overstated. From kilns and crushers to ball mills and gearboxes, modern lubrication solutions are critical in
reducing downtime and maximising equipment lifespan. With rising demand and increased production pressures, cement plants must adopt a proactive approach to lubrication management—viewing it not as a routine maintenance task, but as a strategic pillar of plant performance.
Recent advancements in lubricant technology, such as synthetic formulations, nano-additives, and smart dispensers, have opened new avenues for boosting equipment efficiency and longevity. Digital tools and IoT-based systems now allow plant operators to monitor lubricant condition in real time, enabling predictive maintenance and minimising the risk of failure. As cement manufacturers increasingly pursue digital transformation and automation under Industry 4.0 frameworks, lubrication systems must be seamlessly integrated into broader asset management strategies.
At the same time, sustainability imperatives are reshaping lubrication choices. There is growing emphasis on biodegradable lubricants, optimised lubricant consumption, and environmentally responsible disposal practices. Overcoming challenges such as limited awareness, inconsistent maintenance practices, and cost sensitivity will require collaboration between lubricant manufacturers, OEMs and cement producers. The opportunities, however, are substantial—by aligning lubrication strategies with efficiency, digitalisation and sustainability goals, the Indian cement industry can significantly enhance its competitiveness and resilience in the years ahead.

– Kanika Mathur

Continue Reading

Concrete

We consistently push the boundaries of technology

Published

on

By

Shares

Swapnil Jadhav, Director, SIDSA Environmental, discusses transforming waste into valuable resources through cutting-edge technology and innovative process solutions.

SIDSA Environmental brings decades of experience and expertise to the important niche of waste treatment and process technologies. As a global leader that is at the forefront of sustainable waste management, the company excels in recycling, waste-to-energy solutions and alternative fuel production. In this conversation, Swapnil Jadhav, Director, SIDSA Environmental, shares insights into their advanced shredding technology, its role in RDF production for the cement industry and emerging trends in waste-to-energy solutions.

Can you give us an overview of SIDSA Environmental’s role in waste treatment and process technologies?
SIDSA is a leading innovator in the field of waste treatment and process technologies, dedicated to delivering sustainable solutions that address the growing challenges of waste management.
SIDSA is a more than 52-year-old organisation with worldwide presence and has successfully realised over 1100 projects.
Our expertise is in the engineering and development of cutting-edge systems that enable the conversion of waste materials into valuable resources. This includes recycling technologies, waste-to-energy (W2E) systems, and advanced methods for producing alternative fuels such as refuse derived fuel (RDF). The organisation prioritises environmental stewardship by integrating energy-efficient processes and technologies, supporting industrial sectors—including the cement industry—in reducing their carbon footprint. Through our comprehensive approach, we aim to promote a circular economy where waste is no longer a burden but a resource to be harnessed.

How does SIDSA Environmental’s shredding technology contribute to the cement industry, especially in the production of RDF?
SIDSA’s shredding technology is pivotal in transforming diverse waste streams into high-quality RDF. Cement kilns require fuel with specific calorific values and uniform composition to ensure efficient combustion and operational stability, and this is where our shredding systems excel. In India, we are segment leaders with more than 30 projects including over 50 equipment of varied capacity successfully realised. Some of the solutions were supplied as complete turnkey plants for high capacity AFR processing. Our esteemed client list comprises reputed cement manufacturers and chemical industries. Our technology processes various types of waste—such as plastics, textiles and industrial residues—breaking them down into consistent particles suitable for energy recovery.

Key features include:

  • High efficiency: Ensures optimal throughput for large volumes of waste.
  • Adaptability: Handles mixed and heterogeneous waste streams, including contaminated or complex materials.
  • Reliability: Reduces the likelihood of operational disruptions in RDF production. By standardising RDF properties, our shredding technology enables cement plants to achieve greater energy efficiency while adhering to environmental regulations.

What are the key benefits of using alternative fuels like RDF in cement kilns?
The adoption of RDF and other alternative fuels offers significant advantages across environmental, economic and social dimensions:

  • Environmental benefits: Cement kilns using RDF emit fewer greenhouse gases compared to those reliant on fossil fuels like coal or petroleum coke. RDF also helps mitigate the issue of overflowing landfills by diverting waste toward energy recovery.
  • Economic savings: Alternative fuels are often more cost-effective than traditional energy sources, allowing cement plants to reduce operational expenses.
  • Sustainability and resource efficiency: RDF facilitates the circular economy by repurposing waste materials into energy, conserving finite natural resources.
  • Operational flexibility: Cement kilns designed to use RDF can seamlessly switch between different fuel types, enhancing adaptability to market conditions.

What innovations have been introduced in waste-to-energy (W2E) and recycling solutions?
SIDSA’s machinery is meticulously engineered to handle the complex requirements of processing hazardous and bulky waste.

This includes:

  • Robust construction: Our equipment is designed to manage heavy loads and challenging waste streams, such as industrial debris, tires and large furniture.
  • Advanced safety features: Intelligent sensors and automated controls ensure safe operation when dealing with potentially harmful materials, such as chemical waste.
  • Compliance with standards: Machinery is built to adhere to international environmental and safety regulations, guaranteeing reliability under stringent conditions.
  • Modular design: Allows for customisation and scalability to meet the unique needs of various waste management facilities.

How does your organisation customised solutions help cement plants improve sustainability and efficiency?
We consistently push the boundaries of technology to enhance waste management outcomes.
General innovations and new product development focus on:

  • Energy-efficient shredders: These machines consume less power while maintaining high throughput, contributing to lower operational costs.
  • AI-powered sorting systems: Utilise advanced algorithms to automate waste classification, increasing material recovery rates and minimising errors.
  • Advanced gasification technologies: Convert waste into syngas (a clean energy source) while minimising emissions and residue.
  • Closed-loop recycling solutions: Enable the extraction and repurposing of materials from waste streams, maximising resource use while reducing environmental impact.

What future trends do you foresee in waste management and alternative fuel usage in the cement sector?
Looking ahead, several trends are likely to shape the future of waste management and alternative fuels in the cement industry:

  • AI integration: AI-driven technologies will enhance waste sorting and optimise RDF production, enabling greater efficiency.
  • Bio-based fuels: Increased use of biofuels derived from organic waste as a renewable and low-carbon energy source.
  • Collaborative approaches: Strengthened partnerships between governments, private industries and technology providers will facilitate large-scale implementation of sustainable practices.
  • Circular economy expansion: The cement sector will increasingly adopt closed-loop systems, reducing waste and maximising resource reuse.
  • Regulatory evolution: More stringent environmental laws and incentives for using alternative fuels will accelerate the transition toward sustainable energy solutions.

(Communication by the management of the company)

Continue Reading

Concrete

FORNNAX Technology lays foundation for a 23-acre facility in Gujarat

Published

on

By

Shares

FORNNAX Technology, a leading manufacturer of recycling equipment in India, has marked a major milestone with the Groundbreaking (Bhoomi Pujan) ceremony for its expansive 23-acre manufacturing facility in Gujarat. Specialising in high-capacity shredders and granulators, FORNNAX is strategically positioning itself as a global leader in the recycling industry. The new plant aims to produce 250 machinery units annually by 2030, making it one of the largest manufacturing facilities in the world.
The foundation stone for this ambitious project was laid by Jignesh Kundaria, CEO and Director, alongside Kaushik Kundaria, Director. The ceremony was attended by key leadership members and company staff, signifying a new chapter for FORNNAX as it meets the growing demand for reliable recycling solutions. Speaking on the occasion, Jignesh Kundaria stated, “This marks a historic moment for the recycling sector. Our high-quality equipment will address various waste categories, including tyre, municipal solid waste (msw), cables, e-waste, aluminium, and ferrous metals. this facility will strengthen our global presence while contributing to India’s Net Zero emissions goal by 2070.”
FORNNAX is actively expanding its footprint in critical markets such as Australia, Europe and the GCC, forging stronger sales and service partnerships. The facility will house an advanced Production Department to ensure seamless manufacturing.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds