Connect with us

Technology

Paradigm shift in RMC safety

Published

on

Shares

Challenges of creating a safe environment in "ready mix industry" is compounded by the interlinked but distinct environment. RDC Concrete believe that the challenges are catalyst in creating safe working spaces.

Life is the invaluable gift given to us. For centuries, we survived on instinct and many of our forefathers perished as instinct is not always right and even if it is right, it is many times too late to react. This has now been recognised and form safety systems and audit have been put in place for many decades now. Developed world is far advanced in implementing safety systems and processes. In India, we are far behind. More specifically, construction is not known for complying with safety measures. Although wearing helmets and safety shoes are now compulsory, one can look at any site and we will find a large number of people working there bare-headed and in slippers.

Ready mix concrete (RMC) is not exactly construction industry but is inseparably linked with it. There are variety of hazards involved during the processes of receiving the raw materials, processing it in a plant (plant safety), transporting it on the road (road safety) and delivering the finish product at the customer construction site (site safety). At customer’s site, it is poured in to formwork manually or by pumping to a required height reaching up to 400 m. Challenges in creating a safe environment in ready-mix industry is thus compounded by the interlinked but three distinct environments. In RDC, the challenges are the catalyst in creating safe working spaces. While it is difficult to compute deaths in RMC industry in percentage terms; based on the data presented, it is quite obvious that "Falls" and "Road Accidents" constitutes the main element of deaths in this industry. Road accidents frequently occur because the transit mixer carrying RMC while rotating it in a drum is an additional hazard on the road. Falls occur because of working at height while pouring concrete at higher levels. These are the primary challenges that need to be addressed in this industry. RDC concrete has had zero fatality in the last many years.

Delivering concrete is basically a three step process 1) Manufacturing it at batching plant 2)carrying it to the customer site using transit mixer 3) Pumping and levelling it in to the desired shuttering. All these processes have their own safety, environmental and health impacts. To mitigate these hazards and impact, we trust that our systems shall be fool-proofed. In journey to achieve this aim we implemented many best practices in our plants, in transit mixers and at delivery sites also. Some of amongst them are:

Design safety: First and foremost important is the planning for safe operations, while making layout selection of equipment and building safety features during construction of RMC plant. Plant layout has to be good to avoid criss-crossing of vehicles and smooth flow with minimum reversing of any vehicle. Hence special attention is required during construction of RMC plant of all equipment suppliers, user and safety expert.

During construction stage all safety provisions in plant should be provided like barricading of moving parts like belt conveyor, blower, compressor, isolation lock out tag out during maintenance, containment of diesel storage, barricading of water tank pits, locking arrangement for silo ladder to avoid unauthorised access, fire extinguishers, water sprinkling system to prevent dust during aggregate unloading, bag filters for silos to contain cement/fly ash dust during unloading, RCCBs to prevent electrocution, fire extinguishers for different applications, proper covering of all electrical panels, adequate earthing and lightening arrestors, first aid box, PPEs, fall arrestor, etc.

Training: Training to staff and workers is one of the main aspects for improving safety compliance as attrition rate is very high among plant workers, drivers and pump gang. Display of safety provisions, SOP posters, assembly points, etc. should be done adequately in plant.

Health check: To ensure the good health of employee and workers routines check on blood pressure, sugar, eye sight and BMI, etc. are to be regularly carried out in the plant using portable BP/BMI machines or organising camp at plant. Employee’s annual health check is also should be done as per company policy to detect any warning signs.

Safety in plant operations
A-Type Lock:
This is mechanical interlocking between the main operating panel and plant mixer’s gate, using two special lock having only one common key. As there is only one key operator can either keep the panel on or keep the mixer open, that means when the main panel is on no one can open mixer gate and when the mixer gate will open no one can start the mixer panel. This will completely eliminate chances of accidents during mixer maintenance, whenever people are inside the mixer for chipping or repairs.

Silo top PRV cover: Pressure release valves (PRV) are installed on silo top, which gets open in case of sudden increase in pressure inside silo during material filling. We must ensure that this safety item is procured from reputed parties and regularly cleaned to avoid dust accumulation, which hinders spring mechanism to function.

Flushing of Bulker during unloading: Due to faulty bulker design, all material like cement or fly ash is not getting unloaded in to silo by blowing at normal pressure of 0.9bar and driver resort to pressuring bulker by closing outlet and suddenly releasing it to flush out last left out material in bulker. This is leading to opening of PRV and discharging material in surrounding atmosphere creating pollution and nuisance for neighbors. To control this we created a handy cover over PRV to contain this emitted dust and transfer it to dust collector at bottom. The design is in-house made and created with very low cost, using spare/ used chemical drums, but giving excellent result in dust control.

Calibration from Ground floor: Earlier in plants, employees were risking their life by climbing on mixer top for calibration of cement hopper, this activity is now made risk free by extending cables from the cement hopper till ground floors, with platform hanging on it. This arrangement facilitate employees to do the calibration from ground floor itself, thus avoiding the hazard of falling from height.

Lifeline and grabber: Plant people have to regularly climb on vertical ladder of silo for many jobs Like, PRV checking, stock measurement, etc. All silo’s vertical ladders are now equipped with lifeline and grabber system, this eliminate the risk of falling from silo height. In case of person slip from ladder the grabber will get locked on lifeline and hold the person in its position. Alternatively scaffold staircase should be installed in silo for safe climbing with all silos interconnected at top.

Safety during transportation
To ensure the safety in transportation of concrete, all the aspects of road safety need to be covered. Concrete carrying trucks have agitator drum to delay onset of hardening process of concrete. This drum revolution of 3RPM, shifts concrete on one side leading to shifting of centre of gravity, which keep on changing at curve roads. At high speed at road turning, combined effect of tilting of drum and moment of inertia may lead to toppling of concrete trucks. Many instances of concrete truck toppling reported in various cities due to this reason. Hence training to driver is of utmost importance because driving a concrete truck is a different ball game than an ordinary truck.

To avoid road accident and toppling of trucks due to over speeding, speed limit for transit mixer has to be kept 40 km/hr, and it is to be made sure by installing speed governors in TM, which will not allow driver to increase speed beyond limit set in speed governor. GPS are being installed in trucks to get alert for over-speeding and also voice alert for drivers. Immediate SMS is also going to the truck owner, plant in-charge and safety officer of the organisation. Drivers are being rewarded for safe driving and with minimum violations. It additionally prompts for wearing seat belt also once vehicle is started.

On road, drivers have to deal with various unseen factors that can affect their driving and they have to be fully trained to handle such factors. Training on defensive driving should be given to improve their driving skills and reducing their driving risks by anticipating situations and making safe well-informed decisions.

Driving under the influence of alcohol and drugs is one of the major causes of all road accidents. Alcohol checking should be done for drivers before leaving and coming back to the plant and educate to them about the life threatening consequences of having alcohol during driving. Engagement programme by involving drivers family helps in improving behavior change were quite successful. A poster showing family and message saying "your family is waiting for you at home is fixed in all transit mixers and form that points onwards we observed a considerable reduction in rash driving cases. To improve the safety condition of transit mixer and safety of driver all the transit mixer should be well maintained and equipped with side guard, front guard, reflective stickers, condition of brakes, reverse horn and side mirrors. Drivers have to ensure that safety inspection of TM is done regularly and pictorial checklist is maintained. Drivers should be in full PPE during driving and on site. All the road safety rules need to be followed such as seatbelt, road signs, maintain safe distance, etc. One experienced driver can be entrusted the job of checking condition of all trucks by driving it for certain distance helps in identifying issues while driving.

Safety during pumping operations
Placing of concrete at site is done by various means like pumping, tower crane, builder’s hoist, etc. and it has to be ensured that all the safety rules are followed. During pumping of concrete, safe site condition needs to be ensured by proper inspection of site before placement of pump at safe location. Soil and ground condition where concrete pump need to be placed, should be properly levelled and clear accessibility of trucks to the concrete pump maintained. Pipe line should not be very old or with leakage as pumping pressure in pipeline is very high and deteriorated pipeline can leads to major accident. Magnetic thickness gauge should be used to check thickness of pipe and pipes with lesser thickness than desired should be discarded. Scaffolding condition of slab needs to be check before start of pipe line laying, which should be dependent of the scaffold supporting the pipeline to avoid transmission of jerk to the main slab scaffold. Bamboo scaffolding must be avoided proper interconnection is not possible as compared to steel scaffold which has locks and pins to ensure good connection.

Pipe lifting clamp: Site gang were struggling from long time to carry concrete pipes. As per earlier practice, two persons used to lift pipes facing each other, but after using this holding clamp, both person can now walk in forward direction. Pump gang should use proper PPEs required for the job like hard helmet, safety shoe, reflective jacket, safety harness and goggles. Training should be given to them about all possible hazards and their mitigation plan. Pump supervisor must be made responsible during shifting and laying of pipeline safely.

Pump should be maintained with necessary safety features and no bypassing should be allowed. Regular inspection by equipment manufacturer helps in detecting the bypassing of any safety feature. The concrete pump operator should be well trained in the operation of the pump and should be made accountable for the safety in and around the pump. He also ensures the placing crew and the ready-mix driver are observing safe practices for a successful concrete placement. Concrete pumping is the most efficient way to place concrete and if all safety concerns are addressed before, during, and after a placement, the chance for accidents will be minimized.

Barricade around slab is normally missing during concrete operations and it should be brought to the notice of contractor and installed. Slab openings left uncovered at lower floors with poor lighting also pose serious danger to the pipeline gang during pipe shifting operation. Lift shaft should be avoided for pipeline laying if intermediate platforms are not made for proper pipeline laying. No overhead crane should work just above the pump and truck position to avoid falling of any object due to loose material and serious damage.

Remote indicator for Pump at site: On the site when pump placed at ground floor and delivery going on at some elevated floor, gang supervisor many time need to come to the edge of shuttering to instruct pump operator, this involves high risk of falling from height. To eliminate this we developed remote signalling system for pump operator. Gang supervisor is using handheld remote control to give signal to pump operator to start or stop the pump without risking his life.

Hazards reporting: Hazards reporting is the key in plant safety, and we should make the best use of available technologies. Plant staff can use their smartphone to report hazards with a photograph in the Google forms and the same is instantly get shared with other plants for information and action. Almost all reports can be in Google forms or on Google Drive, which can save a lot of time, and thus help in immediate action to attend to safety issue.

The article is authored by Anil Kumar Banchhor, MD & CEO of RDC Concrete since June 2016. Earlier he was CEO- Concrete Business of ACC Limited and also worked in Tata Consulting Engineers. He is a civil engineer with PG Diploma in Business management having 30 years of experience in construction, consultancy and Ready mix concrete. He worked with several construction and consultancy assignments in India and abroad. He is a panel member of the codal committee of BIS (Bureau of Indian standards) and was council member of "Indian Roads Congress" in 2006.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

From Vision to Action: Fornnax Global Growth Strategy for 2026

Published

on

By

Shares

Jignesh Kundaria, Director & CEO, Fornnax Recycling Technology

As 2026 begins, Fornnax is accelerating its global growth through strategic expansion, large-scale export-led installations, and technology-driven innovation across multiple recycling streams. Backed by manufacturing scale-up and a strong people-first culture, the company aims to lead sustainable, high-capacity recycling solutions worldwide.

As 2026 begins, Fornnax stands at a pivotal stage in its growth journey. Over the past few years, the company has built a strong foundation rooted in engineering excellence, innovation, and a firm commitment to sustainable recycling. The focus ahead is clear: to grow faster, stronger, and on a truly global scale.

“Our 2026 strategy is driven by four key priorities,” explains Mr. Jignesh Kundaria, Director & CEO of Fornnax.

First, Global Expansion

We will strengthen our presence in major markets such as Europe, Australia, and the GCC, while continuing to grow across our existing regions. By aligning with local regulations and customer requirements, we aim to establish ourselves as a trusted global partner for advanced recycling solutions.

A major milestone in this journey will be export-led global installations. In 2026, we will commission Europe’s highest-capacity shredding line, reinforcing our leadership in high-capacity recycling solutions.

Second, Product Innovation and Technology Leadership

Innovation remains at the heart of our vision to become a global leader in recycling technology by 2030. Our focus is on developing solutions that are state-of-the-art, economical, efficient, reliable, and environmentally responsible.

Building on a decade-long legacy in tyre recycling, we have expanded our portfolio into new recycling applications, including municipal solid waste (MSW), e-waste, cable, and aluminium recycling. This diversification has already created strong momentum across the industry, marked by key milestones scheduled to become operational this year, such as:

  • Installation of India’s largest e-waste and cable recycling line.
  • Commissioning of a high-capacity MSW RDF recycling line.

“Sustainable growth must be scalable and profitable,” emphasizes Mr. Kundaria. In 2026, Fornnax will complete Phase One of our capacity expansion by establishing the world’s largest shredding equipment manufacturing facility. This 23-acre manufacturing unit, scheduled for completion in July 2026, will significantly enhance our production capability and global delivery capacity.

Alongside this, we will continue to improve efficiency across manufacturing, supply chain, and service operations, while strengthening our service network across India, Australia, and Europe to ensure faster and more reliable customer support.

Finally: People and Culture

“People remain the foundation of Fornnax’s success. We will continue to invest in talent, leadership development, and a culture built on ownership, collaboration, and continuous improvement,” states Mr. Kundaria.

With a strong commitment to sustainability in everything we do, our ambition is not only to grow our business, but also to actively support the circular economy and contribute to a cleaner, more sustainable future.

Guided by a shared vision and disciplined execution, 2026 is set to be a defining year for us, driven by innovation across diverse recycling applications, large-scale global installations, and manufacturing excellence.

Continue Reading

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Trending News