Connect with us

Concrete

Concrete Temperature

Published

on

Shares

RUPESH KUMAR explains why it is important to control concrete temperature and how it can be done.
With mega structures coming up every?where using high-grade concrete, the control of concrete temperature is become a matter of frequent discu?ssion among civil engineers.

The concern
Green concrete, the nascent stage of concrete hardening, requires a lot of care to mature as good concrete. Concrete is weak in tension bearing; more so, in the initial stage of hardening. Its vulnerability becomes more critical when there are tensile forces induced owing to the hardening process. Being an exothermic reaction, heat is generated during the process; this causes thermal differential and stress that act as a tensile force and cause cracks.

In many cases, cracks developed at the initial stages do not heal and remain or widen further as the concrete shrinks during further hardening. This leads to a situation where structural stability, integrity and durability begin to get compromised. The following observations can be made in the early days of concrete, primarily in the first week:

  • Concrete matures with time and temperature.
  • Strength comes with maturity.
  • In seven days, almost 2/3 of 28 days strength gain for OPC cement-based concrete is expected, though this can vary according to the design mix.
  • The exothermic chemical reaction is most active during this period.
  • Thermal gain is achieved to its maximum during this period; concrete core temperature starts declining after reaching its peak in most cases.
  • Core temperature rise causes thermal differential and stress in concrete.
  • The higher the temperature, faster the maturity. But early higher temperature leads to a greater tendency to crack internally, owing to higher thermal stress. Increasing temperature in the early days has shown more strength on the seventh day and less on day 28 compared to standard maturity of concrete on day seven and 28 respectively, owing to thermal micro-cracking.
  • Concrete plastic shrinkage and initial shrinkage are more dominant during this period and slow down with time. Late shrinkage can continue for many months but the effect is not so significant as the concrete strength is able to counteract the stress of late shrinkage in most cases.
  • Cracks developed during the initial stage owing to plastic shrinkage may not heal automatically in further maturity. On the contrary, at times the crack increases in width, depth or both with time, owing to shrinkage stress acting as a localised tensile force.
  • Cracks develop when the tensile stress increases more than the tensile bearing capacity of the concrete.
  • If the concrete does not gain sufficient strength during the peak concrete temperature, and specifically during higher thermal differential, there is higher likelihood of cracking.
  • The peak temperature of concrete and the thermal differential depends on the green concrete temperature as well as the ambient temperature along with shuttering (temporary formwork) condition.
  • The heat gain in the concrete for a given design mix is the same; thus, the green concrete has a direct effect on the heat gain and rise in concrete core temperature. The higher the green concrete temperature, higher the core peak temperature, and vice versa.
  • The thermal differential causes the stress in the concrete and core to the surface temperature of the concrete must be kept in controlled condition to control the differential. However, the peak temperature of the core beyond a limit may cause other long-term effects like DEF (delayed ettringite formation; a matter yet to be ascertained codally) and needs to be addressed. In Indian tropical conditions, DEF is not expected to be of serious concern if the temperature is taken care of to limit peak temperature below 70?and pozzolanic material is used in the mix. However, thermal differential of concrete must be an area of focus for durable concrete.

Green concrete temperature
The temperature control limits of green concrete are specified in various codes and they all vary. There are references for RCC green concrete temperature for below 40?, up to 38? up to 32?, up to 30? and up to 25? in various codes, including BIS, BS and ASTM.

With higher grades of concrete, the maximum allowable core temperature restrictions are of higher consideration, which restrict the green concrete temperature less than what is allowed in the codes.

To restrict the peak temperature, the green concrete temperature is asked to be reduced. In such a specific scenario, a holistic approach should be taken to define the green concrete temperature as lowering the temperature is a costly affair – although it is not intended to compromise the strength and durability of the concrete. Care should be taken as green concrete temperature control requires a broader approach than simply lowering the temperature during production; it should first be ascertained whether it is really required. It is more prudent to have higher temperature rather than more thermal differential. Also, the lower temperature should be sustained – not less at any one stage of the concrete production, transportation, placement and construction. Further, thermal consideration of concrete is more important for mass concrete than smaller sections.

Way to set concrete temperature limit
To understand the thermal consideration for a given concrete in a project, a preliminary test should be done to arrive at the initial data. Except generally established limits, at present, the codes have not established the procedure for review and analysis of concrete temperature acceptance for a given scenario. A procedure with the action points mentioned below can be used to logically arrive at a calculation analysis and mock-up review to arrive at the concrete temperature acceptance for the given scenario. Some important questions to ask during calculation analysis and mock-up testing are:

How does the concrete temperature rise with time and when the peak temperature is reached for a given mix? For this, a thermal probe can be inserted before placing the concrete and recoding can be done using a thermal data logger. Alternatively, manual set-up and reading can be done, but manual recoding is tedious. The data can be recorded or plotted and analysed.

What is the design calculation with consideration of thermal stress and the crack width allowed as per the design? The data can be obtained from the design calculation sheet or designer.

How is the reinforcement as per the design of the structure and is it able to take the stress developed in the concrete owing to thermal stress? The designer can confirm this and reinforcement adequacy for taking additional thermal stress can be checked considering the crack width limitation as per the design calculation.

How is the maturity of concrete and subsequently the strength of concrete with respect to time? The data can be obtained by taking additional sufficient concrete samples and keeping them under standard testing condition. Curing tank temperature can be taken if the temperature is not being maintained in the curing tank. Testing of concrete sampling shall be done as per testing the procedure at various durations.

Is there any crack observed in the mock up and is there is any crack owing to thermal stress and not plastic shrinkage? To avoid plastic shrinkage, the mock shall preferably be for an adiabatic condition for unreinforced, 1 cu m of mass or miniature replica of the actual structure.

Close observation is required to check crack development; if required, a core can be taken to check the inside of the concrete mass. Normally, thermal stress if developed and causing a crack inside, will reflect up to the surface as the surface to core thermal differential is expected to be more than the thermal differential of the core to the other inner part of concrete. Based on a visual examination, the cracks can be checked.

Now, based on the data mentioned above, one can calculate the estimated concrete temperature and acceptable thermal differential. It can also be analysed whether the concrete is expected to crack beyond the design calculation for the given reinforcement design and estimated concrete peak temperature in the project ambient temperature, and more so for the thermal differential. Then, verification can be done by examining the mock-up concrete.

Thus, one can ascertain whether concrete can sustain the expected peak temperature and thermal differential for a given design mix with reinforcement as per design and ambient condition during construction. In case of non-reinforced concrete (PCC-based structure), reinforcement stress bearing will not be present and the concrete would be able to sustain only as much stress as the maturity of concrete will allow.

About the author
Rupesh Kumar
is a Quality Manager and Concrete Technologist with 18 years of experience working in mega projects in India and abroad. He has dealt with more than 2.5 million cu m of concrete in projects of RMC, hospital, factories, stadium, metros, airports and statue.

This artical was first published in Construction World magazine

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Driving Sustainability Through Innovation

Published

on

By

Shares

The 15th Cement Expo 2025 will spotlight India’s cement industry’s growth, innovation, and sustainability, showcasing cutting-edge solutions for a greener future.

The cement industry in India, the second-largest in the world, is on the cusp of remarkable growth as it continues its transition toward sustainability, innovation, and expansion. The 15th Cement Expo 2025, scheduled for November 12-13, 2025, at the Yashobhoomi Convention Centre in Delhi, will be the premier event where the industry’s foremost stakeholders converge to explore state-of-the-art technologies and solutions.
Co-located with the 11th Indian Cement Review Conference and the 9th Indian Cement Review Awards, the expo promises to be a pivotal event for professionals in the cement, construction, and infrastructure sectors. This year’s theme, “Driving Sustainability Through Technology,” highlights the sector’s commitment to decarbonisation, efficiency, and technological advancement. With India poised to add 80 to 100 million tonnes of cement capacity by 2024-25, the event will address the urgent need for sustainable, low-carbon solutions to meet the growing demand.
Before we look ahead to the 15th Cement Expo, let’s reflect on the remarkable success of the Cement Expo Forum 2025, held on March 5-6, 2025, in Hyderabad. The event attracted over 500 industry professionals and featured groundbreaking discussions on sustainability, logistics, and decarbonisation. Key sponsors and partners, such as ABB, Gebr Pfeiffer, JK Cement, and Flender Drives, showcased their latest innovations, contributing to the forum’s success.
Pratap Padode, Founder and President of First Construction Council, spoke at the event, noting, “The PPP pipeline is complemented by a provision of Rs 1.5 trillion in interest-free loans to states, earmarked for capital expenditure. With this, we have a solid plan in place. What needs to be done is to ensure that the PPP actually takes off as envisaged. To make this happen, trust must be established, and policies must be investor-friendly. Telangana, in this regard, has demonstrated ease of doing business exceptionally well.”
He added, “These financial injections into the infrastructure sector are expected to create a ripple effect, driving demand for cement as a key material in construction and development projects. The growing demand for cement is evident as infrastructure projects continue to rise across the country.”
The forum also provided invaluable networking opportunities, with attendees gaining insights from over 35 distinguished speakers and connecting with more than 50 exhibitors. The event laid a strong foundation for the upcoming Expo, showcasing the significant strides the cement industry is making toward a greener, more efficient future.
The 15th Cement Expo 2025 will focus on advancing the industry’s next big step toward sustainable growth. With India’s cement sector making significant progress in decarbonisation, a key focus will be on technologies and innovations that support carbon capture, low-carbon cement production, and energy-efficient solutions.
The expo will feature over 50 exhibitors representing all aspects of the cement industry. Whether you are a manufacturer, raw material supplier, technology provider, or logistics partner, the Cement Expo 2025 offers an ideal platform to showcase your products and solutions. Attendees will have the opportunity to explore the latest advancements in cement production technology, automation, logistics, and environmental solutions, all geared toward building a greener and more sustainable future.
Exhibitor profiles will include cement manufacturers, raw material suppliers, technology and automation solutions providers, environmental and sustainability solutions providers, cement packaging and logistics, construction equipment manufacturers, admixtures and chemical suppliers, and concrete reinforcement and structural systems.

11th Indian Cement Review Conference

Held alongside the Expo, the 11th Indian Cement Review Conference will offer delegates invaluable insights into the latest trends and innovations shaping the cement industry. Focusing on sustainability, the conference will address critical issues such as energy efficiency, plant design, and emerging technologies like carbon capture and automation.
Industry leaders will share their expertise in technical forums, while specialised activities, such as plant tours and energy audits, will provide practical guidance on improving operations and efficiency. This is a prime opportunity to network with industry stakeholders, gain hands-on experience with new technologies, and acquire actionable knowledge to enhance your business.

9th Indian Cement Review Awards

The 9th Indian Cement Review Awards will recognise the fastest-growing cement companies and industry leaders for their outstanding contributions to the sector. This prestigious event will serve as a platform to honour the pioneers of innovation, sustainability, and performance within the cement industry, highlighting the sector’s commitment to growth and environmental responsibility.
As we look forward to the 15th Cement Expo 2025, we invite you to join us for two exciting days of networking, learning, and innovation. This event offers a unique opportunity to be part of the next wave of growth and sustainability in the global cement sector.

Continue Reading

Concrete

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home

Published

on

By

Shares
When it comes to interior design, walls are more than just structural elements—they serve as the canvas for self-expression, setting the mood and personality of a space. While paint and wallpaper have long been the go-to choices for wall finishes, wall putty is emerging as a game-changer in home décor. With its smooth finish, durability, and versatility, wall putty opens a world of creative possibilities. In this article, we explore trendy wall putty designs that can elevate your interiors, turning ordinary walls into extraordinary design statements.
Wall Putty is a Must-Have in Modern Homes
Wall putty is no longer just a preparatory material for painting; it plays a significant role in modern home aesthetics. It enhances the finish of walls, making them smoother, stronger, and resistant to cracks and moisture. Additionally, high-quality putty like Birla White Wall Putty ensures better paint adhesion, resulting in long-lasting vibrancy.
Beyond its functional benefits, wall putty allows homeowners to experiment with textures and patterns, giving walls a designer touch without the hassle of high-maintenance materials like stone or wood. Whether you’re aiming for a minimalist, rustic, or ultra-modern aesthetic, wall putty designs can help achieve the look effortlessly.
Trendy Wall Putty Designs for Stunning Interiors
1. Textured Wall Putty for a Tactile Appeal
Textured walls are a popular interior trend, adding depth and dimension to living spaces. By using wall putty, homeowners can create a variety of textures, including:
  • Rustic Texture: Mimicking natural stone or aged plaster for an earthy, vintage feel.
  • Wave Patterns: Adding a sense of movement and fluidity to walls, perfect for living rooms and entryways.
  • Sand Finish: A subtle grainy effect that provides a sophisticated touch.
Textured putty walls work exceptionally well in accent areas, such as behind a television unit or as a backdrop for artwork.
2. Sleek and Smooth Walls for a Luxurious Look
For those who prefer a refined and elegant aesthetic, a smooth putty finish is ideal. A flawlessly smooth wall creates a premium appearance, amplifying the impact of high-quality paints. Opting for a high-performance putty like Birla White WallCare Putty ensures a glass-like finish that complements modern and contemporary interiors.
This design is perfect for:
  • Monochrome interiors where walls serve as a sleek backdrop.
  • High-gloss or matte-painted walls that need a seamless base.
  • Spaces with minimal décor where the walls themselves make a statement.
3. Geometric & Abstract Patterns for a Contemporary Edge
Wall putty can be artistically applied to create striking geometric or abstract patterns, adding a unique character to interiors.
Popular designs include:
  • Chevron or Herringbone: A dynamic, sophisticated look that pairs well with both modern and mid-century décor.
  • 3D Raised Panels: Using putty to craft subtle raised patterns, adding a sculptural effect to the wall.
  • Asymmetrical Shapes: For a bold and avant-garde touch.
  • These patterns work best in bedrooms, study areas, or accent walls in open spaces.
4. Venetian Plaster for a Luxe European Aesthetic
Venetian plaster, an age-old technique, is making a grand comeback in modern interiors. With wall putty, you can achieve this exquisite marble-like effect, which exudes luxury and timeless charm.
This design works well for:
  • Statement walls in living rooms and foyers.
  • Elegant dining areas where a touch of opulence is desired.
  • Boutique-style bedrooms with a rich, textured finish.
A high-quality white cement-based putty can replicate this effect beautifully, making the walls look naturally luminous.
5. Dual-Tone or Ombre Walls for a Soft Gradient Effect
The ombre effect, a gradient transition between two colors, is a trendy and artistic way to enhance interiors. When applied over a smooth wall putty base, the gradient blends seamlessly, offering a dreamy, watercolor-like appeal.
This style is perfect for:
  • Children’s rooms or play areas, creating a fun and dynamic atmosphere.
  • Bedrooms with a soothing pastel gradient for a calming effect.
  • Dining spaces where a bold color fade adds character.
6. Metallic & Glossy Finishes for a Chic Look
For homeowners who love glamour and sophistication, combining wall putty with metallic paints or glossy finishes can create a high-end appeal. The smooth base of putty enhances the reflective qualities of metallic shades like gold, silver, or bronze, resulting in an opulent and dramatic effect.
Best suited for:
  • Luxurious master bedrooms and dressing areas.
  • Accent walls in dining rooms or home bars.
  • Commercial spaces like boutiques and salons.
How to Achieve the Best Wall Putty Designs
  • Choose the Right Putty: Opt for a premium wall putty like Birla White WallCare Putty to ensure durability, a smooth finish, and long-lasting appeal.
  • Prepare the Surface: Ensure the walls are clean, dry, and free from loose particles before application.
  • Apply in Layers: Depending on the design, putty can be applied in single or multiple layers for the desired effect.
  • Use the Right Tools: Trowels, spatulas, sponges, or patterned rollers help create specific textures and patterns.
  • Seal with Paint or Polish: Once the putty is dry, finishing it with paint, polish, or protective coatings enhances its aesthetic and durability.
Conclusion
Wall putty has evolved beyond its traditional role, now serving as a medium for creative interior design. Whether you prefer textured finishes, sleek smooth walls, or artistic patterns, wall putty designs can elevate your home’s aesthetics while offering durability and elegance. By selecting the  best putty for wall and application technique, you can transform your interior walls into stunning masterpieces, setting the perfect backdrop for your lifestyle.
For high-quality wall finishes that stand the test of time, Birla White WallCare Putty ensures both beauty and performance, making your dream interiors a reality.

Continue Reading

Concrete

Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka

Published

on

By

Shares
  • Investment in alignment with the strategic goal of becoming a PAN India company and achieving 75 MnT capacity by FY28
  • Increases capacity primarily to meet growing demand in Western India along with existing regions

Dalmia Bharat Limited, one of India’s leading cement companies, through its subsidiaries, has announced a strategic investment of approximately Rs 3,520 Crore in the states of Maharashtra and Karnataka. As part of this initiative, the company will establish a 3.6 MnTPA clinker unit and a 3 MnTPA grinding unit at its existing Belgaum plant, Karnataka coupled with a new greenfield split grinding unit with a capacity of 3 MnTPA in Pune, Maharashtra. The capex will be funded through a combination of debt and internal accruals. With this expansion, Dalmia Bharat’s total installed cement capacity will increase to 55.5 MnTPA, after considering the ongoing expansion of 2.9 MnT at Assam and Bihar. These new units are expected to be commissioned by Q4 FY27.

The Belgaum Grinding Unit will cater to the underserved Southern Maharashtra markets while enhancing share in the existing region by improving penetration. On the other hand, Pune Grinding Unit will entirely cater to the untapped Western Maharashtra markets. The initiative is a part of the company’s vision to be a PAN India player and achieve 75 MnTPA capacity by FY28 and 110-130 MnT by 2031.

Speaking on the development, Mr. Puneet Dalmia, Managing Director & CEO, Dalmia Bharat Limited, said, “This investment is a significant step in our Phase II expansion strategy, bringing us closer to strengthen our position as a pan-India player and to reach intermittent goal of 75 MnT capacity by FY28. The increase in our production capacity is primarily to meet the growing infrastructure demand in Western India.” He further added, “We remain committed in realising our goals of capacity expansion, while staying focused on operational excellence and creating long-term value for our stakeholders. The capacity additions will also continue to be in line with Dalmia Bharat’s sustainability-driven approach and its commitment to supporting India’s infrastructure and development goals.”

About Dalmia Bharat: Founded in 1939, Dalmia Bharat Limited (DBL) (BSE/NSE Symbol: DALBHARAT) is one of India’s pioneering cement companies headquartered in New Delhi. With a growing capacity, currently pegged at 46.6 MnT, Dalmia Bharat Limited (including its subsidiaries) is the fourth-largest cement manufacturing company in India by installed capacity. Spread across 10 states and 15 manufacturing units.  Dalmia Cement (Bharat) Limited, a subsidiary of Dalmia Bharat Limited, prides itself at having one of the lowest carbon footprint in the cement world globally. It is the first cement company to commit to RE100, EP100 and EV100 (first triple joiner) – showing real business leadership in the clean energy transition by taking a joined-up approach.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds