Connect with us

Environment

In Pursuit of Greener India

Published

on

Shares

For many cement companies in India, AFR represents an important business opportunity because it reduces fuel costs and CO2 emissions. By dealing safely with wastes that are often difficult to dispose of in any other way, cement manufacturers are able to provide an important service to society.

Cement production is characterised by an extremely high-temperature combustion process (up to 20,000?C flame temperature), necessary for heating and fusing the raw materials. The traditional fossil fuels most commonly used in this combustion process are coal, heavy fuel oil or gas. Substitution of these fossil fuels by alternative, waste derived fuels is a common practice in the cement industry, in many parts of the world. The nature of the production process makes it eminently suitable for this purpose – by ensuring full energy recovery from various wastes under appropriate conditions. Any solid residue from the waste then becomes a raw material for the process and is incorporated into the final cement clinker. Sometimes, waste can also be used to substitute raw materials in the process, thereby also conserving the natural resources generally used in the manufacture of cement.Why is this issue important?

Waste is an important issue for society – as an example, Europe alone produces more than 350 million waste tyres per annum. Recycling and disposal options for many waste materials and industrial by-products are often limited – used tyres is but one example. Where recycling is not possible, incineration or landfill is the most common disposal practice available for many wastes. However, by using waste as an alternative fuel or raw material in the cement-making process, there are benefits for society as well as to the cement maker. For many cement companies in India, it represents an important business opportunity, because it reduces fuel costs and CO2 emissions. By dealing safely with wastes that are often difficult to dispose of in any other way, cement manufacturers are able to provide an important service to society.

India can achieve 25 per cent thermal substitution rate (TSR) by 2025. In comparison to global standards, the country is far behind, as in many countries the substitution is 60-100 per cent. The main differentiator is the waste characteristics and the lack of support by the required agencies for generating a good segregated quality waste. This long term plan of achieving 25 per cent substitution rate, is as it is very challenging.

Challenges
Why achieving 25 per cent substation rate is a challenge, is very well explained by Milind Murumkar, Advisor – AFR, Vicat India Group. The main challenges faced by any cement manufacturer in use of Alternative Fuels & Raw Materials (AFR), which can be classified into four.

Managements ‘will’ to use and improve the AFR utilisation in its plants. Which means, creating a suitable environment and commitment in their people to achieve the targeted short and long term plans. Initially no one is willing to bring and use waste – which may have strong or unpleasant odour, may be difficult to handle, store and use – from other industries in their plant. Management thus needs to build and develop the infrastructure in a manner that it can use all types of industrial wastes be it solids, semi-solids or liquid.

Secondly, skill development and infrastructure is important, as AFR utilisation requires special skills in cement plants. In this case, engineers need to be properly trained to understand the waste characteristics, raw material and fuel characteristics; and the point of dosage in the kiln. This is mainly due to the fact that while using higher quantities of wastes in cement plants, process stabilities are maintained, which may otherwise affect the quality of product and production levels. A cement plant has to know its raw material composition and fuel composition to decide on the types of waste that can be used in their system and accordingly decide on the feeding points of different types of waste that need to be co-processed.

Murmukar further enlightens the regulatory requirements. There are specific rules and guidelines for hazardous waste during transportation, storage and usage, that the cement plants have to comply with, while using hazardous materials. The equipment and storage area etc., needs to be selected based on the availability of waste and the plants for next 10-15 years. Here Murumkar’s advice is to have proper market data mapping and long term agreements with the waste generators to build trust and confidence in them.

Lastly, understanding waste and waste generators, is the most challenging factor. It is necessary to understand the pain points of the waste generating industry and work on providing a total solution for managing their waste in an environmental friendly manner. Business success depends on having a good ‘win-win’ model between the cement plant and the waste generating industry. Waste generators need total solution for the different wastes generated. The success in utilisation of different types of waste in cement plant lies in having co-processing ability for providing total solution to the generating industry.

AFR for Greener India
As rightly simplify by UltraTech officials, the advantages of co-processing of alternate fuel in cement plant ranks higher in the waste processing hierarchy. This is because, high flame temperature (2,000?C) – ensures complete destruction of harmful pollutants. Residence time of combustion gases above 1,000?C in excess of three-four seconds – ensures complete destruction of pollutants. Plus, a complete destruction of organic compounds. Importantly, co-processing of AFR in cement ensures total neutralisation of acid gases, sulphur oxides and hydrogen chloride, by the active lime in the kiln load, in large excess to the stoichiometry. And, for the betterment of environment, there will be no production of by-products such as ash or liquid residue from gas cleaning.

Benefits of AFR is it produces overall environmental benefits by reducing releases to air, water and land. It also, maximises the recovery of energy while ensuring their safe disposal. Since, most of the cement plant use coal as a fuel, AFR definitely stands a chance to substitute coal, with savings made through resource conservation and associated CO2 emissions.

Meanwhile, one must understand that not every waste is suitable. In addition, according to Holcim, manufacturers must ensure that they do not impact product quality nor increase their atmospheric emissions by using a particular waste. At the same time, a key objective of AFR use is to achieve reductions in CO2 emissions. Meanwhile, stakeholder debate continues over the use of AFR in cement kilns. Some stakeholders are concerned about potential health or environmental impacts from the handling and combustion of alternative fuels. Others are concerned that product quality could be compromised. It has also been claimed that the use of waste and by-products as fuels actually perpetuates the production of these wastes, by offering a legal, cost-efficient solution to disposal.

However, other stakeholders are pleased by the ‘win-win’ possibilities of cutting GHG emissions and disposing of wastes by using AFR. It is therefore a challenge for cement manufacturers to manage stakeholder expectations and provide assurances to demonstrate their responsible use of these waste materials.

Cost Matter
Use of alternate fuels for TSR is a financial viable intervention with very good internal rate of return (IRR). It also depends on the type of waste proposed for usage and technical intervention. Many Indian cement plants have successfully implemented these options and substituted fossil fuel significantly. The payback period generally varies between two-four years.

Meanwhile, AFR is certainly beneficial in terms of earnings for the company (Refer Earning Benefits on page no 44). If managed properly, to have a blend of commodities and industrial waste in terms of TSR and thermi cost reduction, the benefits will be substantial. Unless AFR co-processing has a good economic viability, its long-term sustenance cannot be ascertained. The entire economic model needs to be such that the Rs/thermi is lower than that of fossil fuels.

Consistent Quality
Consistent supply and uniform quality are main constraints in utilising AFRs – for example, tyre carbon black. The cost of the carbon black depends upon the cost of waste tyres in the domestic market and import conditions. Due to high demand for waste tyres, the cost of carbon black is increasing and hence its adulteration too. There should be long term agreement with the manufacturers directly with clear quality parameters, thereby the traders can be avoided and can sustain the supply as well as quality. However, the essence of the agreement shall be the price factor with regards to the coal price. Regulatory authorities need to standardise all waste to streamline market operations.

Also, there is no existing standard for NOx from kiln Only SPM standard is 50 mg/Nm3 for new plants and 100 mg/Nm3 for old plants. NO2 standard from 1-1-2016 and SPM standard from 1-6-2016 for cement kiln will be 800 mg/Nm3 and 30 mg/Nm3, respectively. Now, most of the cement manufacturers have deployed online monitoring system and commissioned in plants stacks for monitoring SPM, SO2 and NOx. The online monitoring system has already started and likely to help manufacturers in controlling emissions while firing different type of AFRs.

Present Policy Framework
The Indian Waste Management policy frame-work, notified in 2016 is well designed for sustain-able waste management. It gives due recognition to co-processing. Its salient features are following.

  • These are based on the principle of Sustainability rather than disposal
  • Waste generator is required to manage his waste respecting the Waste Management Hierarchy and SPCBs are required to authorise the same. (Rule 4, HWM)
  • A facility is required to obtain authorisation from SPCB for receiving, storing, handling, transporting and pre-processing of wastes based on the availability of compliant infra-structure to handle them safely. (Rule 6, HWM)
  • Co-processing in cement plant is to be implemented based on the compliance to prescribed emission standards. Co-processing trial of any waste is not required anymore to receive authorisation for its co-processing. (Rule 9, HWM)
  • Interstate movement of wastes for recycling or co-processing is to be implemented by intimation to the respective SPCBs. (Rule 18, HWM)
  • Pre-processing centers to be developed rather than landfill sites
  • Convert SCF to RDF (Rule 15 (v), SWM)
  • For wastes recycling / utilisation (Rule 5.1 HWM)
  • Segregated Combustible Fraction (SCF) having calorific value >1500 Cal / gm to be sent to cement plant for co-processing (Rule 21.2, SWM)

The above provisions in the rules favor co-processing substantially. However, following is further required to be published by CPCB as mandated in the rules or for smooth implementation of these provisions in the rules
1.Guidelines on pre-processing and co-processing of wastes
2.Guidelines on co-processing of plastic wastes
3.Protocol for emissions monitoring from cement plants
The other important requirement that is desired to facilitate ease in achieving successful and responsible co-processing are following.
A)SPCBs must permit the waste generator to send his waste to any of the pre-processing or co-processing facility that is approved by SPCB of the respective State.
B)Transportation of the Hazardous wastes is per-mitted through a transporter that is approved by any of the SPCBs.

Social and Environmental Security
Different kinds of wastes that get generated during agricultural, industrial or municipal acti-vities pose severe environmental concerns to the society and can cause substantial damage to the environment in case they are not managed properly. All these wastes that may be hazardous or non-hazardous, can be co-processed in an envi-ronmentally sound manner in the cement kilns.

As per the new Waste Management Rules 2016, Government of India has abolished the earlier practice of granting waste by waste permit system. This system, says Ulhas Parlikar, Deputy Head, Geocycle India, ACC Ltd, "was in practice prior to the notification of these rules in which, the permit for undertaking co-processing of a waste used to be granted based on the review of the results of the co-processing trial of that particular waste."

"This action MoEFCC has implemented because the cement kiln co-processing has been demonstrated as an environmentally sound and ecologically sustainable solution for waste management," he added. To achieve this, according to Parlikar, environmentally compliant management of the wastes, proper control on inputs, process, output and emissions is required by way of implementing necessary facilities and process control measures.

The new Waste Management Rules 2016 have mandated that the permission for co-processing of all kinds of wastes can be granted by State Pollution Control Boards (SPCBs) based on the availability of the prescribed infrastructure in the plant to handle wastes in an environmentally sound & occupationally safe manner and while undertaking co-processing, compliance to the emission standards notified by MoEFCC for cement kilns undertaking co-processing. The Central Pollution Control Board (CPCB) has already prepared a circulated a draft of the pre- and co-processing guideline illustrating specific requirements to the stakeholders and is in the process of publishing the same after accommodating stakeholder comments.

Target: 25% TSR
Currently, the Indian cement industry’s average TSR is around four per cent, whereas the TSR in few countries are as high as 60 per cent (Austria, Germany). Now, with above stated challenges, it is a matter of interest to see how India will reach the set target of 25 per cent or more of TSR by 2025. A few is outlined by V Kannan, Counsellor, CII – Godrej Green Business Centre. The Government has already included necessary policy changes for adopting co-processing in the country. Further, capacity building on new rules and proper implementation of the rules will substantially increase co-processing levels in the country.

Under the Swachh Bharat Mission (SBM) and smart cities programme, management of municipal solid waste management (MSW) through sustainable practices is very vital. The new SWM rules also advocate source segregation of waste to channelise the waste-to-wealth by recovery, reuse and recycle. In addition, all industrial units using fuel and located within 100 km from a solid waste-based refuse derived fuel (RDF) plant shall make arrangements within six months from the date of notification of these rules to replace at least five per cent of their fuel requirement by RDF so produced. That apart, non-recyclable waste having calorific value of 1,500 K/cal/kg or more shall not be disposed of on landfills and shall only be utilised for generating energy either or through refuse derived fuel or by giving away as feed stock for preparing refuse derived fuel. And lastly, high calorific wastes shall be used for co-processing in cement or thermal power plants. Cement plants also working on various initiatives like pre-processing platforms, utilisation of hazardous waste, tie ups with urban local bodies to utilise MSW as a fuel increases TSR levels.

For experts to achieve the target there is an urgent need to implement necessary policy level reforms that are emission monitoring and infrastructure based. Further, there is a need for the cement industry to implement necessary facilities for waste handling, storing, pre-processing and feeding in the kiln. There is also investment required for creating facilities for monitoring and control of emissions. Further, the legislative process needs to bring the material in the market. For example, although, large quantities of tyres are replaced every year in the country, the same is not visible in the waste market. This is because there is no defined regulatory system in place to collect and divert them in the waste market. Once they become visible in the waste market, they will be available to the cement industry for disposal through co-processing.

Fact sheet

  • AFR substitution increased from less than 1% to more than 4% in 2016.
  • Recognition for co-processing in the policy framework.
  • >45 cement plants started co-processing in their production units.
  • Few state pollution control boards like Gujarat and Tamil Nadu, developed specific action plan & implementation schedule to promote co-processing.
  • >12 cement plants set up pre-processing facilities to convert non-homogeneous waste in to AFRs.
  • LCA (Life Cycle approach) is considered as a part of manufacturing process and extended producer responsibility.

Vicat’s proven track record
Vicat operates two plants in India as Kalburgi cement plant and Bharti cement plants, with an annual capacity of around 8 mtpa, to produce quality cement since 2009. Since the inception the focus was on utilisation of AFR material in both the plants and presently, Vicat could achieve TSR of around 20 per cent.

The journey started with substitution rate of around 5 per cent in 2012 and in last five years it has reached to a level of 20 per cent. The initial start-up was on utilisation of easy to use AF materials like biomass, segregated non-recyclable plastic waste etc. Presently, the company can co-process different types of waste like industrial wastes (hazardous and non hazardous), tyre derived waste, plastics derived waste, derived waste from MSW segregation process, animal waste, waste from windmill sources etc. The company also offers cradle to grave solution for different sectors like pharmaceutical industry, FMCG, tyre sector and municipal corporations for segregated MSW, food and beverage industries etc.

Understanding the main factors that led to this improvement in usage of AFR in Vicat will help the Indian cement industry have an introspection of their processes and preparedness for improving AFR utilisation in their plants.

Earning Benefits:
INCOME ITEMSEXPENDITURE ITEMS
Waste Generator
1.Sale price of Waste
2.Savings in cost of waste management due to co-processing
3.Reduction in the liability costs1.Tipping Fee for waste management
2.Marketing expenses
3.Pre-processing cost to convert waste into AFR

Cement Plant
1.Tipping Fees from waste generator
2.Substitution benefit derived due to use of AFRs1.Waste identification
2.Laboratory assessment
3.Handling and storage
4.Pre-processing cost to convert waste to AFR
5.Production impact
6.Fuel usage impact
7.Interest and Depreciation costs etc.

ACC: Leader in waste Management
The use of AFR essentially serves to move away from dependence on fossil-based fuels and other mineral resources.
In 2016, the company succeeded in co-processing 379,520 tonnes of AFR, achieving a TSR of 3.22 per cent. Following the commissioning and stabilisation of two pre-processing platforms and a third under execution, ACC expects the TSR percentage to increase in the long run, enabling company to cut its footprint even further.

ACC has taken the lead in providing safe waste management solutions to major waste generating industries and organisations. The core objectives of value creation, customer service and technical excellence together drive the company’s initiative towards providing sustainable waste management solutions under the brand name – Geocycle. A key challenge posed on environment today that is a cause of major concerns about the health and safety of all citizens comes from the enormous volumes of municipal waste being generated in our cities and towns. Recognising this problem, the company is extending the scope of its waste management solutions to developing safe and sustainable solutions for the efficient disposal of municipal wastes. In the course of providing waste management solutions to municipalities, ACC also seek to reduce reliance on traditional fuels.

ACC has increased co-processing of RDF and non-recyclable SCF of MSW in its facilities enabled by large scale investments in R&D made for the safe utilisation of these waste streams. ACC, in this case, is working with state governments and waste management agencies such as in Goa on a MSW Landfill Remediation Project, the first-of-its-kind project in India, wherein ACC received and co-processed around 4,800 tonnes of RDF at the Wadi plant in 2016.

ACC redoubled its endeavours in lobbying, advocacy and capacity building to achieve greater technical and legal recognition for co-processing technology in line with accepted international standards.

"Banned wastes" not to be pre-processed or co-processed:
Radioactive waste
Asbestos-containing waste
Explosives and ammunition / weapons
Anatomical medical waste

"Banned wastes" not to be co-processed (These wastes however can be co-processed after
pre-processing to remove the banned portion of the waste):
Electronic fraction of electrical and electronic waste (e-waste)
Whole batteries as a targeted material stream
Waste of unknown or unpredictable composition, including unsorted municipal waste

-RAHUL KAMAT

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Charting the Green Path

Published

on

By

Shares

The Indian cement industry has reached a critical juncture in its sustainability journey. In a landmark move, the Ministry of Environment, Forest and Climate Change has, for the first time, announced greenhouse gas (GHG) emission intensity reduction targets for 282 entities, including 186 cement plants, under the Carbon Credit Trading Scheme, 2023. These targets, to be enforced starting FY2025-26, are aligned with India’s overarching ambition of achieving net zero emissions by 2070.
Cement manufacturing is intrinsically carbon-intensive, contributing to around 7 per cent of global GHG emissions, or approximately 3.8 billion tonnes annually. In India, the sector is responsible for 6 per cent of total emissions, underscoring its critical role in national climate mitigation strategies. This regulatory push, though long overdue, marks a significant shift towards accountability and structured decarbonisation.
However, the path to a greener cement sector is fraught with challenges—economic viability, regulatory ambiguity, and technical limitations continue to hinder the widespread adoption of sustainable alternatives. A major gap lies in the lack of a clear, India-specific definition for ‘green cement’, which is essential to establish standards and drive industry-wide transformation.
Despite these hurdles, the industry holds immense potential to emerge as a climate champion. Studies estimate that through targeted decarbonisation strategies—ranging from clinker substitution and alternative fuels to carbon capture and innovative product development—the sector could reduce emissions by 400 to 500 million metric tonnes by 2030.
Collaborations between key stakeholders and industry-wide awareness initiatives (such as Earth Day) are already fostering momentum. The responsibility now lies with producers, regulators and technology providers to fast-track innovation and investment.
The time to act is now. A sustainable cement industry is not only possible—it is imperative.

Continue Reading

Concrete

It is equally important to build resilient building structures

Published

on

By

Shares

Manoj Rustagi, Chief Sustainability Officer, JSW Cement, discusses how the adoption of ‘green’ practices in cement manufacturing could reshape the future of sustainable construction worldwide.

Cement is one of the most carbon-intensive materials in construction — but innovation is changing that. As sustainability becomes central to infrastructure, green cement is emerging as a viable low-carbon alternative. In this detailed interview with Manoj Rustagi, Chief Sustainability Officer, JSW Cement, we explore what makes cement ‘green’, its performance, and its future. From durability to cutting-edge technologies, here’s a look at the cement industry’s greener path forward.

What exactly is green cement, and how does it differ from traditional cement?
At this point in time, there is no standard for defining green cement. A very simple way to understand ‘Green Cement’ or ‘Low Carbon Cement’ is the one which emits much lower greenhouse gasses (GHG) compared to conventional cement (Ordinary Portland Cement – OPC) during its manufacturing process.
In India, there are many existing BIS Standards for different types of cement products. The most common are OPC; Portland Pozzolana Cement (PPC); Portland Slag Cement (PSC) and Composite Cement (CC). While OPC emits maximum GHG during its manufacturing (approx 800-850 kg CO2/MT of OPC), PSC emits least GHG (approx 300-350 kg CO2/MT of PSC). As PSC is having close to 60 per cent lower CO2 emission compared to OPC, it is the greenest cement available in the Indian market.
There is already work happening at the central government level to define green cement, like it has been recently done for green steel, and hopefully in the next one year or so the standard definition would be available.

What are the key environmental benefits of using green cement?
The primary environmental benefits of green or low-carbon cement are:

  • Reduced CO2 emissions
  • Lower energy and power consumption
  • Conservation of limestone and fossil fuels
  • Utilisation of industrial by-products
  • (slag/fly ash)

Can green cement match the durability and strength of conventional cement?
PSC is much more durable than any other type of cement product. It has lower heat of hydration; the strength keeps on improving with time; and it has much higher resistance to chloride and sulphate attacks. Most of the concrete failures are because of chloride and sulphate attacks, which corrode the steel reinforcements and that is how cracks get initiated and propagated resulting in eventual concrete failures. For coastal applications, marine structures, seaports, and mass concreting, PSC is most suitable. Due to the intrinsic durability characteristics of PSC; it is a green and resilient cement product.
Usually everyone talks about lower GHG emissions, but it is equally important to build resilient building structures that can withstand natural calamities and have much longer lifespans. PSC is one cement type that is not only lowest in CO2 emissions but at the same time offers durability characteristics and properties (RCPT, RCMT, Mercury Intrusion, long term strength and flexural strength), which are unmatched.

What innovative technologies are being used to produce green cement?
To further reduce the CO2 emissions in the manufacturing process; some of the innovative technologies which are commercially viable are:

  • Alternative raw materials: Use of steel slag, red mud and other industrial by-products to substitute limestone
  • Alternative fuels: Use of RDF/MSW, pharmaceutical wastes like biomass etc., to substitute coal/pet-coke
  • Waste Heat Recovery (WHR): Power plants to generate electricity from waste heat
  • Renewable energy: Solar and wind energy instead of state grid

How cost-effective is green cement compared to traditional options?
All of the above innovative technologies do not increase the cost of manufacturing. There are some future technologies like Carbon Capture, Utilisation and/or Storage (CCUS), which are not commercially viable and would increase the cost of cement. As such, the options available today for low-carbon cement (like PSC) are not expensive.
The Government of India has recently notified Indian Carbon Market (ICM), which also includes the cement sector. Hopefully, this would help progressive companies to further reduce their carbon footprint.

What challenges does the industry face in adopting green cement on a large scale?
There is absolutely no incentive/motivation for builders/contractors to use green cement products and therefore there is practically no demand. While the industry has taken many steps. In fact the Indian cement industry is believed to be most energy efficient globally and has approximately 10 per cent lower GHG emissions compared to global average. But due to lack of awareness and lack of performance based standards; the demand for low carbon cement or green cement has not picked up in India.

Are governments and regulators supporting the shift to green cement?
In India, in the last couple of years, there have been many policy interventions which have been initiated. One of them, namely the carbon market is under notification; others like Green Public Procurement, Green Cement taxonomy and National CCUS Mission are in the advanced stages and are expected to be implemented in the next couple
of years.

How do you see the future of green cement in global construction?
Globally the built environment accounts for 40 per cent CO2 emissions; and the maximum embodied emissions come from cement and concrete. There is a lot of innovation happening in cement, concrete and construction. Basically, how we build and what material we use. And this is to do with both carbon mitigation as well as adaptation as the built environment is so important for sustainable living. Precast and pre-engineered buildings/structures, 3D concrete printing, ultra high performance concrete, digital and AI/ML interventions in construction, admixtures/improved concrete packing; and circularity in cement manufacturing are some examples. Low-carbon cement or green cement eventually will lead to ‘Net Zero CO2 emission’ cement, which would enable a ‘Net-Zero’ built environment that is needed for long term sustainability.

Continue Reading

Concrete

Solid Steps to Sustainability

Published

on

By

Shares

Milind Khangan, Marketing Manager, Vertex Market Research, looks at how India’s cement industry is powering a climate-conscious transformation with green cement at its core, aligning environmental urgency with economic opportunity.

The cement industry produces around eight per cent of the world’s total CO2 emissions. Process emissions, largely due to limestone calcination, contribute 50 to 60 per cent of these emissions and produce nearly one ton of CO2 per ton of cement produced.
India is a leading cement producer with an installed capacity of around 550 million tons (MMT) as of 2024. As the Government of India advances toward its 2070 net-zero target, green cement is becoming a major driver of this shift toward a low-carbon economy. It offers environmental sustainability as well as long-term operating efficiencies at scale. With the fast-paced urbanisation and infrastructure development across the nation, the use of green cement goes beyond environmental imperatives; it is also a strong strategic business opportunity. Indian cement players are some of the most sustainable and environmentally conscious players in the world, and indigenous cement demand in India is estimated to grow at a CAGR of 10 per cent until 2030.

Innovating sustainably
Green cement is an umbrella term that includes multiple advanced technologies and processes aimed at minimising the environmental footprint, and CO2 emissions of conventional cement manufacturing. This shift from traditional practices targets minimising the carbon footprint throughout the whole cement manufacturing process.

  • Clinker substitution: Substitution of high-carbon clinker with supplementary cementitious materials (SCMs) in order to considerably lower emissions.
  • Alternative binders: Developing cementitious systems that require minimal or no clinker, reducing reliance on traditional methods.
  • Novel cements: Introducing new types of cement that depend less on limestone/clinker, utilising alternative modified processes and raw materials.
  • Energy efficiency and alternative fuels: Optimising energy utilisation in production and substituting fossil fuel with cleaner alternatives coming from waste or biomass.
  • Carbon capture, utilisation, and storage (CCUS): Trapping CO2 emissions at cement plants for recycling or geological storage.

Drivers and strategic opportunities
Robust infrastructure development pipeline: The government’s continued and massive investment in infrastructure (roads, railways, housing, smart cities) generates huge demand for cement. Crucially, there is a growing preference and sometimes direct requirement under public tenders for sustainable building materials, including green cement, which is giving a significant market stimulus.
India’s national climate commitments (NDC and Net Zero 2070): India’s commitments under the Paris Agreement (NDCs) and the long-term goal of achieving Net Zero emissions by 2070 have set a clear direction for industrial decarbonisation. This national strategy necessitates action from high-emitting sectors such as cement to adopt green cement technologies and carbon-reducing innovations across the construction value chain. Notably, the Indian cement industry alone is expected to generate nearly 400 million tonnes of GHG emissions by 2030.
Regulatory mandates for fly ash utilisation: The Ministry of Environment, Forest and Climate Change (MoEFCC) has released a number of binding notifications that promote the use of fly ash from thermal power plants. These guidelines seek to reduce environmental impact by enhancing its extensive application in cement production, particularly in Portland Pozzolana Cement (PPC). Fly ash acts as a pozzolanic material, reacting with calcium hydroxide to produce cementitious compounds, hence decreasing clinker consumption, a high-energy component contributing to high CO2 emissions. Through clinker substitution facilitation, such mandates directly enable the production of low-carbon green cement.
Promotion and utilisation of blast furnace slag: Steel plant slag utilisation policies provide a ready SCM for manufacturing Portland Slag Cement (PSC). This is advantageous in terms of the supply of another key raw material for green cement manufacturing.

Increased demand due to green building movement
The larger adoption of green building codes and certification systems such as GRIHA and LEED India by builders and developers promotes the use of materials with reduced carbon content. Cement products with a higher SCM content or produced through cleaner processes are preferred. A step in this direction was achieved in October 2021 when Dalmia Cement achieved the distinction of being the first Indian cement producer to be granted the Green Product Accreditation of GRIHA.
The Indian industry is actively investing in R&D for new binders such as geopolymer cement, alkali-activated materials and limestone calcined clay cement (LC3). Research institutions including IIT Madras are collaborating with industry to scale these technologies. Although Carbon Capture, Utilisation, and Storage (CCUS) is still at a nascent stage in India, it represents a potential frontier for long-term decarbonisation in the cement sector.
The MoEFCC has published draft regulations under the Carbon Credit Trading Scheme (CCTS), 2023, in the form of the Greenhouse Gas Emission Intensity Target Rules, 2025. The draft notification requires 186 cement units in India to lower their GHG emission intensity from FY 2025-26. Non-compliant manufacturers will have to purchase carbon credit certificates or face penalties, creating a clear regulatory and financial incentive to adopt cleaner technology. The CCTS will promote technology and practice adoption that reduces the carbon intensity of cement manufacturing, potentially resulting in the use of green cement and other low-carbon substitutes for cement.
India’s leading cement companies like UltraTech, Shree Cement, and Dalmia Bharat have made science-based targets and net-zero emissions pledges in line with the GCCA 2050 Cement and Concrete Industry Roadmap. These self-declarations are hastening the shift towards clean cement manufacturing technology and renewable energy procurement.

Challenges and complexities in India’s green cement transition
Economic viability and cost challenges: High production costs associated with low-carbon cement technologies remain a significant hurdle. The absence of strict carbon pricing and poor financial incentives slow down rapid uptake on a large scale. Although green cement is currently costlier than conventional options, greater market adoption and scale-driven efficiencies are expected to progressively narrow this price gap, enhancing commercial viability over time. As these technologies mature, their broader deployment will become more feasible.
Inconsistent supply chain of SCMs: A dependable supply of high-quality Supplementary Cementitious Materials (SCMs), such as fly ash and slag, is crucial. But in the course of decarbonisation of India’s power generation and industry sectors, SCMs reliability and availability may become intermittent. Strong, decentralised logistics and material processing units must be developed in order to provide uninterrupted and economical SCM supply chains to cement producers.

Gaps in technical standards and performance benchmarks
Although PPC and PSC are well-supported by existing BIS codes, standards for newer materials such as calcined clay, geopolymer binders and other novel SCMs require timely development and updates. Maintaining steady performance, lasting robustness, and usage dependability in varying climatic and structural applications will be key to instilling market faith in other forms of cement formulation. Market stakeholders are also supporting separate BIS codes for the green cement sub-categories for helping to build and sustain standardisation and trust.

Scaling of emerging technologies
Scaling promising technology, especially CCUS, from pilots to commercial scales within the Indian context involves significant investment of capital, technical manpower, and a facilitating regulatory environment. The creation of infrastructure for transportation and long-term storage of CO2 will be critical. While these facilitative systems are implemented, cement makers will be well-placed to decarbonise their operations and achieve national sustainability goals.

The way ahead
The Indian cement industry is poised to enter a revolutionary era, where decarbonisation and sustainability are at the heart of expansion. Industry players and the government need to join hands in an integrated manner throughout the cement value chain to spearhead this green revolution. Cement companies must embrace new technologies to lower the emissions like the utilisation of alternative fuels like biomass, industrial wastes, and recycled materials and utilisation of waste heat recovery systems to make energy efficient. The electrification of logistics and kilns, investigation of high-heat alternative products, and CCUS technology investments must be made to decarbonise production. Sophisticated additives such as polymers can improve cement performance with reduced environmental footprint.
At the policy level, the government has to introduce support measures such as stable carbon pricing, tax relief, viability gap funding, and initiatives such as the PLI scheme to encourage the use of renewable energy in cement manufacturing. Instruments such as carbon contracts can stabilise carbon credit prices and reduce market risk, encouraging investment in low-carbon technologies. Updating BIS standards for newer green cement formulations and SCMs is also critical for market acceptance and confidence. Green cement mandates in public procurement and long-term offtake contracts have the potential to generate stable demand, and green financing windows can guarantee commercial viability of near-zero carbon technologies. Cement greening is not a choice, it is a necessity for constructing a climate-resilient, sustainable India.

About the author:
Milind Khangan, Marketing Manager, Vertex Market Research, comes with more than five years of experience in market research and lead generation. He is responsible for developing new marketing plans and innovations in lead generation, having expertise in creating a technically strong website that generates leads for startups in market research.

Continue Reading

Trending News