Connect with us

Technology

Mechanical Activation of Fly Ash

Published

on

Shares

Many scientists and environmentalists have been attracted towards fly ash, though it is not an attractive material. Dr Ajit Kumar Bhonsle, who has long been associated with the construction industry, narrates his experience on improving the performance of fly ash by mechanical means.

Fly ash is a finely divided residue, resulting from the combustion of ground or powdered bituminous coal or sub-bituminous coal (lignite) and is transported by the flue gases of boilers fired by pulverised coal or lignite. It comprises spherical particles, mostly amorphous, in addition to unburnt carbon, crystalline mullite, quartz and hematite. It has cementitious properties which exhibit when mixed with hydrated lime and alkalis. The mineralogical and chemical composition of n??y ash depends on the source of the coal and design engineering of fly ash collection at the power stations.

Fly ash is a very fine powder and tends to travel far in the air. When not properly disposed, it is known to pollute air and water, and causes respiratory problems when inhaled. When it settles on leaves and crops in fields around the power plant, it lowers the yield. The conventional method used to dispose of both fly ash and bottom ash is to convert them into slurry for impounding in ash ponds around the thermal plants. The construction of ash ponds requires vast tracts of land. This depletes land available for agriculture over a period of time. When one ash pond fills up, another has to be built, at high cost and with further loss of agricultural land. Huge quantity of water is required to convert ash into slurry. During rains, numerous salts and metallic content in the slurry can leach down to the groundwater and contaminate it. Of late (early 1970s), due to development of technology, collection of dry fly ash has started.

Fly ash generation in India

  • 75 per cent of installed power generation in India – coal-based
  • 200 million MT of fly ash is generated every year
  • 300-500 million MT coal used every year
  • Ash generation likely to reach 300+ million MT by 2017-18
  • Average ash contents up to 35 per cent in Indian coal
  • Presently as per the figures from the Ministry of Environment & Forest, only 25-35 per cent of ash is being used in fillings, embank-?ments, construction/cement industry, block and tiles, etc.

Several factors have impeded fly ash utilisation in India, while it is being extensively used globally. Coal-based thermal power stations have been operational for more than 50 years, but the concept of developing environment-friendly solutions for fly ash utilisation is only about 15 years old. Overall, fly ash utilisation in India stands at a fairly low level of about 25-35 per cent of the quantity generated. Various possibilities for increasing its use are under research and development (R&D). Among numerous factors that account for the low level of utilisation, the major factors are:

  • Poor understanding of the chemistry of fly ash and its derivatives for proper end applications
  • Absence of standards and specifications for fly ash products
  • Lack of reliable quality assurance for fly ash products
  • Poor public awareness about the products and their performance
  • Availability of dry fly ash collection facilities is far off from consumption places.
  • Easy availability of land with top soil at cheap rates for manufacturing conventional bricks
  • Lack of proper coordination between thermal plants and ash users.

Mechanical activation of fly ash, an efforts to increase utilisation of fly ash The need of hour is to increase utilisation of fly ash through R&D activities. One such major activity that is being tried is mechanical activation of fly ash, a process that comprises exposing the particles to high energy impacts in order break or crack the particle microstructure to increase the surface area and reactivity of each particle. It is a process not only for achieving finer fly ash (up to 6,000-8,000 Blains), but also help conversion of fly ash particles from spherical shape to crystalline shape, thereby making available larger surface area for pozzolanic reaction. With mechanical activation, even the coarse fly ash and pond fly ash can be converted to finer reactive fly ash. Refer to Table 1 and 2. This would not only double the lime reactivity of normal fly ash, but would also result in giving packing effect to its final product, there by giving the final product increased density and better strength in shorter time (J Temuujin, R P Williams, A Van Riessen).

Low fly ash utilisation – technical facts
In addition to factors discussed above, there are some technical factors also, which hinder the optimum utilisation of fly ash. The prime factors are:
Coarseness: Despite having cementitiouss and pozzolanic properties, consumption of available fly ash has limitation due to its coarseness. Coarse fly ash gives a low compressive strength when used up to 30 per cent of cement replacement.
Spherical shape: Further, the large particle sizes carry the spherical form, which is inactive to pozzolanic reaction.
Inconsistency in particle size distribution (large variation in particle size in coarse fly ash), lower fineness and spherical shape result in limited availability of surface for reactivity.
Spherical particles also contribute to lower density of the mass.
Thus, lower density hinders the development of strength at early stage.
So, how mechanical activation would overcome these limitations: As discussed above, the mechanical activation is a method of obtaining very fine fly ash (up to or +8,000 Blaine). In addition, it also destroys the spherical morphology of raw fly ash and converts fly ash particles from spherical shape to crystalline shape.
Fineness and conversion result in larger surface area availability for lime reactivity, which is vital to any material having cementitious and pozzolanic properties.
Smaller particles fill voids between larger particles, thereby giving the final product increased density and strength.
Crystalline form of the particles itself leaves no room for voids as in the case of spherical particles. This results in reduction of water consumption, which otherwise gets accumulated in the voids.
Lab tests have shown increase in lime reactivity
Improved durability of concrete, even with 50 per cent replacement of OPC
Increase in tensile strength of cement product
Reduction in water consumption

Difference between superfine fly ash (SFAF) and normal fly ash: Finer particle size of SFAF and change in its morphology allow higher dissolution rate of SFAF. Thus, Geo polymer paste made with SFAF when cured at ambient temperature leads to an increase of about 80 per cent in compressive strength when compared with Geo polymer made from normal fly ash.

Some facts
Beside environmental issues discussed above, one of the major elements, which cause global warming, is emission of carbon dioxide (CO2). It is observed that production of one tonne of Portland cement releases an equal amount of CO2 into atmosphere, thus utilisation of fly ash in cement will help to contain CO2 emission. Therefore, use of fly ash will increase the cement production which in turn will slow down the rate of depletion of available natural resources.

An estimate says replacing 15 per cent cement worldwide by fly ash will reduce CO2 emission by 227 million tonne.
The target is replacing 50 per cent of cement worldwide by fly ash will reduce CO2 by 750 million tonne. Refer to Table 3. This may be equal to removing 25 per cent of all automobiles in the world.
Full utilisation of generated fly ash in India will provide employment potential for more than 3,00,000 people. This will generate a business volume of over Rs 4,000 crore.

Materials
I shall now give my experiences on improving the performance of fly ash through mechanical ways. Fly ash used for study purpose is procured from the Gandhinagar Thermal Power Station in Gujarat and Parli Thermal Power Station at Parli Vaijnath in Beed district of Maharashtra. Around 80 tonnes of samples is collected for study assessment.

Method
After mechanical activation, both the samples were analysed for the particle sizes, fineness (blains air permeability) and lime reactivity. The analysis was conducted at National Council for Cement and Building Materials (NCCBM) at Ahmedabad, Gujarat. Standard method of testing were done as per IS 3812- Part 1 and 2 (2003) as Specification for Pulverised Fuel Ash, Part 1: for use as pozzolanic additive in cement, cement mortar and concrete [CED 2: Cement and Concrete] and specification for pulverised fuel ash, Part 2: for use as admixture in cement mortar and concrete [CED 2: Cement and Concrete] and IS 1727 (1967) for methods of test for pozzolanic materials [CED 2: Civil Engineering].

Test results of parameter for fineness, lime reactivity and compressive strength are mentioned in the tables Refer to Table 1 and 2.

Conclusion
Fly Ash is a wonderful material, however need of the hour is to explore its properties scientifically and make use of the same in various spheres.
Mechanically activated fly ash has vast potential to improve upon the utilization of fly ash in no. of fields viz cement, concrete, cement products like paver blocks bricks.
Mechanically activated fine fly ash can also be used in paint industry, cement roof sheeting industry
Consistent quality of activated fly ash can be a good substitute for concrete/cement strength enhancing material viz micro silica alcofine etc.
Activation facility if set up near thermal power plant it would generate employment opportunity to the local labour force.
Activation of fly ash may a good tool to combat the problem of Fly Ash disposal which is likely to increase in the days to come.
Up to 110 per cent of strength activity index can be achieved when normal fly ash is ground to smaller size.
Strength activity index of normal fly ash can be improved by grinding and coarse fly ash is not in crystalline phase.
For a good quality of micro fine fly ash, by classifying or grinding, the important factor is its fineness. Fly ash with finer particle size increases ultimate strength as well as rate of strength gain of fly ash cement mortar.
When keeping the same work-?ability of mortal, the use of finer fly ash demands less water than the use of normal coarse one.

Excerpt from the former President, APJ Abdul Kalam?s address to the nation on the eve of the country?s 56th Republic Day
Conversion of fly ash into wealth generator:
Fly ash can become a wealth generator by making use of it for producing ?green building? materials, roads, agriculture etc.
Full utilisation of the generating stock will provide employment potential for three hundred thousand people and result in a business volume of over Rs 4,000 crore.?(ENVIS newsletter vol. 2, no.6 Jan 2007)

The author is an expert with over 35 years of experience working in cement, concrete and allied fields.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

We consistently push the boundaries of technology

Published

on

By

Shares

Swapnil Jadhav, Director, SIDSA Environmental, discusses transforming waste into valuable resources through cutting-edge technology and innovative process solutions.

SIDSA Environmental brings decades of experience and expertise to the important niche of waste treatment and process technologies. As a global leader that is at the forefront of sustainable waste management, the company excels in recycling, waste-to-energy solutions and alternative fuel production. In this conversation, Swapnil Jadhav, Director, SIDSA Environmental, shares insights into their advanced shredding technology, its role in RDF production for the cement industry and emerging trends in waste-to-energy solutions.

Can you give us an overview of SIDSA Environmental’s role in waste treatment and process technologies?
SIDSA is a leading innovator in the field of waste treatment and process technologies, dedicated to delivering sustainable solutions that address the growing challenges of waste management.
SIDSA is a more than 52-year-old organisation with worldwide presence and has successfully realised over 1100 projects.
Our expertise is in the engineering and development of cutting-edge systems that enable the conversion of waste materials into valuable resources. This includes recycling technologies, waste-to-energy (W2E) systems, and advanced methods for producing alternative fuels such as refuse derived fuel (RDF). The organisation prioritises environmental stewardship by integrating energy-efficient processes and technologies, supporting industrial sectors—including the cement industry—in reducing their carbon footprint. Through our comprehensive approach, we aim to promote a circular economy where waste is no longer a burden but a resource to be harnessed.

How does SIDSA Environmental’s shredding technology contribute to the cement industry, especially in the production of RDF?
SIDSA’s shredding technology is pivotal in transforming diverse waste streams into high-quality RDF. Cement kilns require fuel with specific calorific values and uniform composition to ensure efficient combustion and operational stability, and this is where our shredding systems excel. In India, we are segment leaders with more than 30 projects including over 50 equipment of varied capacity successfully realised. Some of the solutions were supplied as complete turnkey plants for high capacity AFR processing. Our esteemed client list comprises reputed cement manufacturers and chemical industries. Our technology processes various types of waste—such as plastics, textiles and industrial residues—breaking them down into consistent particles suitable for energy recovery.

Key features include:

  • High efficiency: Ensures optimal throughput for large volumes of waste.
  • Adaptability: Handles mixed and heterogeneous waste streams, including contaminated or complex materials.
  • Reliability: Reduces the likelihood of operational disruptions in RDF production. By standardising RDF properties, our shredding technology enables cement plants to achieve greater energy efficiency while adhering to environmental regulations.

What are the key benefits of using alternative fuels like RDF in cement kilns?
The adoption of RDF and other alternative fuels offers significant advantages across environmental, economic and social dimensions:

  • Environmental benefits: Cement kilns using RDF emit fewer greenhouse gases compared to those reliant on fossil fuels like coal or petroleum coke. RDF also helps mitigate the issue of overflowing landfills by diverting waste toward energy recovery.
  • Economic savings: Alternative fuels are often more cost-effective than traditional energy sources, allowing cement plants to reduce operational expenses.
  • Sustainability and resource efficiency: RDF facilitates the circular economy by repurposing waste materials into energy, conserving finite natural resources.
  • Operational flexibility: Cement kilns designed to use RDF can seamlessly switch between different fuel types, enhancing adaptability to market conditions.

What innovations have been introduced in waste-to-energy (W2E) and recycling solutions?
SIDSA’s machinery is meticulously engineered to handle the complex requirements of processing hazardous and bulky waste.

This includes:

  • Robust construction: Our equipment is designed to manage heavy loads and challenging waste streams, such as industrial debris, tires and large furniture.
  • Advanced safety features: Intelligent sensors and automated controls ensure safe operation when dealing with potentially harmful materials, such as chemical waste.
  • Compliance with standards: Machinery is built to adhere to international environmental and safety regulations, guaranteeing reliability under stringent conditions.
  • Modular design: Allows for customisation and scalability to meet the unique needs of various waste management facilities.

How does your organisation customised solutions help cement plants improve sustainability and efficiency?
We consistently push the boundaries of technology to enhance waste management outcomes.
General innovations and new product development focus on:

  • Energy-efficient shredders: These machines consume less power while maintaining high throughput, contributing to lower operational costs.
  • AI-powered sorting systems: Utilise advanced algorithms to automate waste classification, increasing material recovery rates and minimising errors.
  • Advanced gasification technologies: Convert waste into syngas (a clean energy source) while minimising emissions and residue.
  • Closed-loop recycling solutions: Enable the extraction and repurposing of materials from waste streams, maximising resource use while reducing environmental impact.

What future trends do you foresee in waste management and alternative fuel usage in the cement sector?
Looking ahead, several trends are likely to shape the future of waste management and alternative fuels in the cement industry:

  • AI integration: AI-driven technologies will enhance waste sorting and optimise RDF production, enabling greater efficiency.
  • Bio-based fuels: Increased use of biofuels derived from organic waste as a renewable and low-carbon energy source.
  • Collaborative approaches: Strengthened partnerships between governments, private industries and technology providers will facilitate large-scale implementation of sustainable practices.
  • Circular economy expansion: The cement sector will increasingly adopt closed-loop systems, reducing waste and maximising resource reuse.
  • Regulatory evolution: More stringent environmental laws and incentives for using alternative fuels will accelerate the transition toward sustainable energy solutions.

(Communication by the management of the company)

Continue Reading

Concrete

FORNNAX Technology lays foundation for a 23-acre facility in Gujarat

Published

on

By

Shares

FORNNAX Technology, a leading manufacturer of recycling equipment in India, has marked a major milestone with the Groundbreaking (Bhoomi Pujan) ceremony for its expansive 23-acre manufacturing facility in Gujarat. Specialising in high-capacity shredders and granulators, FORNNAX is strategically positioning itself as a global leader in the recycling industry. The new plant aims to produce 250 machinery units annually by 2030, making it one of the largest manufacturing facilities in the world.
The foundation stone for this ambitious project was laid by Jignesh Kundaria, CEO and Director, alongside Kaushik Kundaria, Director. The ceremony was attended by key leadership members and company staff, signifying a new chapter for FORNNAX as it meets the growing demand for reliable recycling solutions. Speaking on the occasion, Jignesh Kundaria stated, “This marks a historic moment for the recycling sector. Our high-quality equipment will address various waste categories, including tyre, municipal solid waste (msw), cables, e-waste, aluminium, and ferrous metals. this facility will strengthen our global presence while contributing to India’s Net Zero emissions goal by 2070.”
FORNNAX is actively expanding its footprint in critical markets such as Australia, Europe and the GCC, forging stronger sales and service partnerships. The facility will house an advanced Production Department to ensure seamless manufacturing.

Continue Reading

Concrete

Decarbonisation is a focus for our R&D effort

Published

on

By

Shares

Dyanesh Wanjale, Managing Director, Gebr. Pfeiffer discusses the need to innovate grinding technologies to make the manufacturing process more efficient and less fuel consuming.

Gebr. Pfeiffer stands at the forefront of grinding technology, delivering energy-efficient and customised solutions for cement manufacturers worldwide. From pioneering vertical roller mills to integrating AI-driven optimisation, the company is committed to enhancing efficiency and sustainability. In this interview, we explore how their cutting-edge technology is shaping the future of cement production.

Can you tell us about the grinding technology your company offers and its role in the cement industry?
We are pioneers in grinding technology, with our company being based in Germany and having a rich history of over 160 years, a milestone we will celebrate in 2024. We are widely recognised as one of the most efficient grinding technology suppliers globally. Our MBR mills are designed with energy efficiency at their core, and for the past five years, we have been focused on continuous improvements in power consumption and reducing the CO2 footprint. Innovation is an ongoing process for us, as we strive to enhance efficiency while supporting the cement industry’s sustainability goals. Our technology plays a critical role in helping manufacturers reduce their environmental impact while improving productivity.

The use of alternative fuels and raw materials (AFR) is an ever-evolving area in cement production. How does your technology adapt to these changes?
Our vertical roller mills are specifically designed to adapt to the use of alternative fuels and raw materials. These mills are energy-efficient, which is a key advantage when working with AFR since alternative fuels often generate less energy. By consuming less power, our technology helps bridge this gap effectively. Our solutions ensure that the use of AFR does not compromise the operational efficiency or productivity of cement plants. This adaptability positions our technology as a vital asset in the industry’s journey toward sustainability.

What are some of the challenges your company faces, both in the Indian and global cement industries?
One of the major challenges we face is the demand for expedited deliveries. While customers often take time to decide on placing orders, once the decision is made, they expect quick deliveries. However, our industry deals with heavy and highly customised machinery that cannot be produced off the shelf. Each piece of equipment is made-to-order based on the client’s unique requirements, which inherently requires time for manufacturing.
Another significant challenge comes from competition with Chinese suppliers. While the Indian cement industry traditionally favoured our technology over Chinese alternatives, a few customers have started exploring Chinese vertical roller mills. This is concerning because our German technology offers unmatched quality and longevity. For example, our mills are designed to last over 30 years, providing a long-term solution for customers. In contrast, Chinese equipment often does not offer the same durability or reliability. Despite the cost pressures, we firmly believe that our technology provides superior value in the long run.

You mentioned that your machinery is made-to-order. Can you elaborate on how you customise equipment to meet the specific requirements of different cement plants?
Absolutely. Every piece of machinery we produce is tailored to the specific needs of the customer. While we have standard mill sizes to cater to different capacity requirements, the components and configurations are customised based on the client’s operational parameters and budget. This process ensures that our solutions deliver optimal performance and cost efficiency. Since these are heavy and expensive items, maintaining an inventory of pre-made equipment is neither practical nor economical. By adopting a made-to-order approach, we ensure that our customers receive machinery that precisely meets their needs.

The cement industry is focusing not only on increasing production but also on decarbonising operations. How does your company contribute to this dual objective, and how do you see this evolving in the future?
Decarbonisation is a key focus for our research and development efforts. We are continuously working on innovative solutions to reduce CO2 emissions and improve overall sustainability. For example, we have significantly reduced water consumption in our processes, which was previously used extensively for stabilisation. Additionally, we are leveraging artificial intelligence to optimise mill operations. AI enables us to monitor the process in real-time, analyse feedback, and make adjustments to achieve optimal results within the given parameters.
Our commitment to innovation ensures that we are not only helping the industry decarbonise but also making operations more efficient. As the cement industry moves toward stricter sustainability goals, we are confident that our technology will play a pivotal role in achieving them.

Can you provide more details about the use of digitalisation and artificial intelligence in your processes? How does this improve your operations and benefit your customers?
Digitalisation and AI are integral to our operations, enabling us to offer advanced monitoring and optimisation solutions. We have developed three distinct models that allow customers to monitor mill performance through their computer systems. Additionally, our technology enables real-time feedback from our German headquarters to the customer. This feedback highlights any inefficiencies, such as when a parameter is outside the optimal range,
and provides actionable recommendations to address them.
By continuously monitoring every parameter in real time, our AI-driven systems ensure that mills operate at peak efficiency. This not only enhances production but also minimises downtime. I am proud to say that our mills have the lowest shutdown rates compared to other manufacturers. This reliability, combined with the insights provided by our digital solutions, ensures that customers achieve consistent and efficient operations. It’s a game-changer for reducing costs and enhancing overall productivity.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds