Connect with us

Technology

Innovation in Grinding Technology

Published

on

Shares

Any process development in a cement plant has to address quality requirements, coupled with reduction in energy consumption. The roller press in finish mode is one such innovation.

The roller press is a relatively new development in the cement manufacturing process, compared to other standards in the industry. This efficient comminution machine is applied mainly for clinker, but is also used for raw material and slag grinding. The size reduction of the material takes place under high pressure between two rotating rollers. The press can be installed in combination with a tube mill (semi-finish grinding mode) or standalone in the finish grinding mode.

The roller press operates under the principle of high pressure inter-particle comminution.

KHD was the first to run its roller presses in the finish grinding mode for raw material, slag and clinker grinding. However, especially in India, the question soon came up as to whether KHD?s roller press can be operated in the finish grinding mode with coarser fly ash added into the feed composition. (Refer to Figure 1 & Figure 2).

Technical Investigation
In the past, many people believed that the particle shape of roller press produced cement was not as good as compared to product coming out of a ball mill. However, the German Cement Research Institute (VDZ) has proven that the above statement is not true. The graph below confirms the results of tests done on semi-industrial grinding circuits.

The distribution of various particle sizes and their roundness in different machines shows that the major population between 3 to 30 microns follows almost the same roundness using either a ball mill or a roller press. This diagram shows that all grinding systems have similar particle shapes. (Refer to Figure 3).

Water demand depends on particle size distribution and not roundness. Strength also depends on many factors, but not mainly on roundness or water demand. With this in mind, the Dalmia Cement operations team began using a KHD roller press RP16-170/180 in the finish grinding mode to produce PPC. In order to meet Dalmia?s high quality standards, the Dalmia quality department monitored the cement quality at frequent intervals.

Two roller presses in one combined circuit were operated in the finish grinding mode (Figure 5) [without using the ball mill itself] by routing fly ash into the circulation elevator (at the ball mill) and feeding it into the top of the separator [common for two roller press and fly ash feeding]. The process ran in this manner for one week. In order to make clear comparisons, samples were taken from PPC cement produced in two separate 10-hour production runs in the finish grinding mode. The same was then done for PPC produced in the semi-finish grinding mode, i.e., two roller presses and one ball mill. (Figure 4). The results are summarised in the following Tables 1 to 4. From Table 2, it is clear that the RP alone in finish grinding mode is operated with same roller loading as in the semi-finish grinding mode (RP with BM). Fly ash absorption is also recorded at 27 per cent, i.e., similar to semi-finish grinding mode. The roller press operational stability is similar in finish and semi-finish modes, when comparing parameters like pressure, grinding force, vibration, kilowatts, etc. From Table 1 & 2, finish grinding mode operation for production of PPC with coarser fly ash is well established. Furthermore, finish mode operation with a specific power requirement of 25.2 kWh/t is more efficient than production in the semi-finish mode operation with specific power of 27.5 kWh/t.

Quality Parameters: Comparison Finish Mode [RP Only] and Semi-Finish [RP+BM] The particle size distribution (Table 3) shows no significant differences. PPC cement quality in the finish grinding mode of operation (Table 4) in terms of strength (1-day, 3-day,7-day and 28-day) is equal to that produced in the semi-finish grinding mode operation at 54.2 MPa strength after 28 days and 30 MPa at 3 days.

Observations:

  1. No hot gas requirements.
  2. PPC cement product quality parameters show equivalent strengths in 1D, 3D, 7D and 28D in finish (RPs only) and semi-finish grinding modes (RPs plus BM).
  3. It is observed that the water demand (normal consistency of cement paste) is almost same in finish mode grinding, in spite of using coarser feed fly ash [200-240 M2/kg],
  4. Particle size distribution of product produced in the finish grinding mode with 65 per cent particle population, between 3 to 30 microns (refer to the enclosed PSD curve) results in better setting time and high early strengths (Blaine is also slightly higher).
  5. Separator reject distribution made at the RP feed-bin and at the V-separator discharge makes the roller press operation more stable.
  6. Roller press operation with studded rolls was found to generate more grip and take a better nip of the material to be ground. Therefore, consistent grinding force between the grinding rolls results in a consistent power draw by the rolls.
  7. The studded rolls ran with optimum power draw, even with lower specific grinding force < 4.5 N/mm?. Nevertheless, it achieved 88 per cent draw power, which indicates studded rolls are better in comparison to other grinding surfaces in terms of exerting draw power on rolls.
  8. Total grinding circuit specific power consumption was found as 25.2 kWh/t and 22.8 kWh/t for the main equipment.
  9. A circuit equipped with an air chute and close transfer points makes this circuit a neat and clean circuit.

Conclusion
By using the latest technological configurations, like studded rolls, air chutes, RP location above the V-Separator, you can achieve the lowest power consumption in the total circuit. Therefore, the KHD roller press circuit fulfills all 3Es (Efficiency, Energy and Environmental friendly). The roller press is the most efficient comminution machine for grinding of slag, raw material and OPC, based on the above results for PPC and other composite cements.

About the authors
This article has been Authored by RA Somani, Dalmia Bharat Cement Ltd, and AK Dembla, Humboldt Wedag India Pvt Ltd. The authors convey their special thanks to the Dalmia Site team, M/s. Bhartendu Tiwari, HWI Team Ramji Gautam and Balesh K Singh, for their excellent support in making the exercise a success.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Technology

M.E. Energy Bags Rs 490 Mn Order for Waste Heat Recovery Project

Second major EPC contract from Ferro Alloys sector strengthens company’s growth

Published

on

By

Shares

M.E. Energy Pvt Ltd, a wholly owned subsidiary of Kilburn Engineering Ltd and a leading Indian engineering company specialising in energy recovery and cost reduction, has secured its second consecutive major order worth Rs 490 million in the Ferro Alloys sector. The order covers the Engineering, Procurement and Construction (EPC) of a 12 MW Waste Heat Recovery Based Power Plant (WHRPP).

This repeat order underscores the Ferro Alloys industry’s confidence in M.E. Energy’s expertise in delivering efficient and sustainable energy solutions for high-temperature process industries. The project aims to enhance energy efficiency and reduce carbon emissions by converting waste heat into clean power.

“Securing another project in the Ferro Alloys segment reinforces our strong technical credibility. It’s a proud moment as we continue helping our clients achieve sustainability and cost efficiency through innovative waste heat recovery systems,” said K. Vijaysanker Kartha, Managing Director, M.E. Energy Pvt Ltd.

“M.E. Energy’s expansion into sectors such as cement and ferro alloys is yielding solid results. We remain confident of sustained success as we deepen our presence in steel and carbon black industries. These achievements reaffirm our focus on innovation, technology, and energy efficiency,” added Amritanshu Khaitan, Director, Kilburn Engineering Ltd

With this latest order, M.E. Energy has already surpassed its total external order bookings from the previous financial year, recording Rs 138 crore so far in FY26. The company anticipates further growth in the second half, supported by a robust project pipeline and the rising adoption of waste heat recovery technologies across industries.

The development marks continued momentum towards FY27, strengthening M.E. Energy’s position as a leading player in industrial energy optimisation.

Continue Reading

Technology

NTPC Green Energy Partners with Japan’s ENEOS for Green Fuel Exports

NGEL signs MoU with ENEOS to supply green methanol and hydrogen derivatives

Published

on

By

Shares

NTPC Green Energy Limited (NGEL), a subsidiary of NTPC Limited, has signed a Memorandum of Understanding (MoU) with Japan’s ENEOS Corporation to explore a potential agreement for the supply of green methanol and hydrogen derivative products.

The MoU was exchanged on 10 October 2025 during the World Expo 2025 in Osaka, Japan. It marks a major step towards global collaboration in clean energy and decarbonisation.
The partnership centres on NGEL’s upcoming Green Hydrogen Hub at Pudimadaka in Andhra Pradesh. Spread across 1,200 acres, the integrated facility is being developed for large-scale green chemical production and exports.

By aligning ENEOS’s demand for hydrogen derivatives with NGEL’s renewable energy initiatives, the collaboration aims to accelerate low-carbon energy transitions. It also supports NGEL’s target of achieving a 60 GW renewable energy portfolio by 2032, reinforcing its commitment to India’s green energy ambitions and the global net-zero agenda.

Continue Reading

Trending News