Connect with us

Technology

Low carbon technology roadmap of the Indian cement industry

Published

on

Shares

Reducing the clinker factor in the final cement reduces CO2 both from the calcination of carbonates and from combustion of coal, but the fuel substitution rate has to go up. Facilitation is required to allow cement kilns to utilise large quantum of wastes as AFRs. Ulhas Parlikar of Geocycle India elaborates on what can happen with appropriate policy framework.

India is the second largest producer of cement next to China. The Indian cement industry is consolidated, organised and mature. The top 20 cement companies account for almost 70 per cent of the total cement production of the country (IBEF, 2014). Actual production of 250 Mt cement in 2013, meant that the industry consumed approximately 300 Mt of virgin raw material, 24 Mt of coal (MoC, 2015), 20 billion kWh electricity and emitted nearly 175 MtCO2. Due to reducing coal linkages over the years, the Indian cement industry imports over 30% of its total coal requirement, adding to the cost of producing cement.

The Indian industry?s average thermal energy consumption is estimated to be about 725 kcal/kg clinker and the average electrical energy use is about 80 kWh/t cement, much lower than the global average of 934 kcal/kg clinker and 107 kWh/t cement. The best levels achieved by the Indian cement industry, at about 680 kcal/kg clinker and 66 kWh/t cement, are comparable with the best achieved levels in the world (WBCSD CSI, 2013). The cement industry is currently using 45 Mt of fly ash from coal-based power stations and around 10 Mt of blast furnace slag from the production of pig iron (WBCSD, 2013).

The mineral waste fractions are substituting the Portland cement clinker by grinding it together in the cement mill (or separate pulverisation prior to blending). Reducing the clinker factor in the final cement reduces the CO2 both from the calcination of carbonates and from combustion of coal.

However, the Thermal Substitution Rate (TSR) or Fuel Substitution of the Indian cement industry with the utilisation of wastes from agricultural, industrial and municipal sources as alternative fuels and raw materials (AFRs) is only in the range of 1 – 2 per cent.

Waste generation scenario and cement kiln option for its gainful disposal
India generates large quantum of wastes from agricultural, Industrial and municipal sources and currently the entire waste is disposed without any recovery process. Several countries globally have utilised cement kilns as an effective option for their country?s industrial, municipal and hazardous waste disposal. This creates a win-win situation for both the local administration and the cement plants: the administration utilises the infrastructure already available at cement kilns, thereby spending less on waste management, and the cement kilns are paid by the polluter for safe waste disposal, as well as having their fuel requirements partly met.

The Cement Vision of India 2025 prepared by AT Kearney/CII has projected that the TSR of the Indian cement industry would be about 12% by 2025 and the study of the Low-Carbon Technology Roadmap for the Indian cement industry prepared by the International Energy Association, in collaboration with WBCSD, has projected the same to be 19% in 2030 and 25% in 2050.

Opportunity for resource conservation and GHG mitigation through co-processing
If the Indian cement industry is also able to move towards large-scale use of AFRs and is able to achieve the TSR as envisaged in the low carbon technology roadmap, there will be a substantial contribution that the cement industry will be able to make towards resource conservation and GHG mitigation.

The projected output of this exercise is presented in the Table-1
It can be observed that if wastes are utilised as AFRs, there is potential to conserve coal of about 11 to 16 Mio TPA in the year 2030 and about 17 to 30 Mio TPA of coal in the year 2050. In 2020 and 2030, for every Mt of cement produced, 7 000 tonnes and 25 000 tonnes of AFs need to be co-processed, respectively. This means that we will be saving an amount of coal that we are consuming at present. This also helps in mitigating an amount of GHG emissions that we are letting into the environment. India?s industrial waste is growing in volume. Out of current generation of 4 Mt of landfillable and incinerable wastes, 2.5 Mt (60%) is awaiting disposal. Studies conducted by the Ministry of New and Renewable Energy (MNRE) have estimated surplus biomass availability at about 120-150 Mt per annum covering agricultural and forestry residues. As per the Planning Commission task force report on waste to energy, of the 62 Mt of MSW generated in urban India, 12 Mt is a combustible fraction, which can be potentially converted to RDF, thereby replacing 8 Mt of coal.

Current regulatory processes are not aligned to tap this opportunity
The cement industry prefers uniform emission standards for co-processing rather than case-by-case permits. In India, it normally takes more than a year for a waste stream to get regular permits for co-processing. This is because the law and guideline mandates trial runs to be conducted for each new waste streams, requiring approvals for trial and regular usage from both state and central pollution control boards. For some special and difficult to treat hazardous wastes (pesticides, PCB, CFC, etc.), however, it is important and necessary to carry out trial burns to ensure compliance to environment and occupational health and safety.

In India itself, co-processing technology has also been used to destroy hazardous chemicals. A trial conducted at ACC-Kymore cement works, in SINTEF?s and CPCB?s supervision, demonstrated destruction and removal efficiency (DRE) of 99.9999% for concentrated CFC (chlorofluorocarbons) gases at high feeding rate in an Indian cement kiln. This shows the potential of the technology with regard to safe and sound destruction of hazardous chemicals in existing infrastructure.

The major categories of wastes that can be used by the cement industry as alternative fuels and raw materials are hazardous wastes, non-hazardous wastes, Refuse Derived Fuel (RDF), Municipal Solid Waste (MSW), shredded tyres and biomass. The major constraints in implementing large-scale co-processing of these kinds of wastes in the Indian cement industry along with the support required are elaborated in detail in the low carbon technology roadmap document.

The major constraint is the current regulatory framework that is built on the principle of disposal rather than the principle of sustainability. A permitting system resembling international best practice will probably stimulate broader interest. A revision and update of the existing guidelines and permitting requirements (addressing issues such as interstate transportation, emission limits, standard approach for utilisation of alternative sources of de-carbonated materials and mineralizers, etc.,) is regarded to be of crucial importance in order to stimulate increased co-processing practice.

Desired changes in the Indian regulatory framework
The desired changes are provided below.
I.Hazardous wastes
1)Amendment in Hazardous Waste (Management, Handling & Transboundary Movement) Rules, 2008 to:
1.Recognise co-processing in cement kiln as a preferred technology for disposal because it is a resource recovery option over landfill and incineration operation. (By this provision, the wastes that can be co-processed will not get disposed through landfill and incineration process. In fact, restrictions or limits on landfill (or inclusion of externality charges or future liability costs to landfill charges) will give impetus to co-processing initiative in India).

2.Authorise cement plants to receive, store, pre-process and co-process wastes based on the availability of required infrastructure to handle and store hazardous wastes as specified in the HWM Rules and based on prescribed emission standards.

The current waste by waste permitting process through co-processing trial is not a relevant process of approval for co-processing for following reasons: (a)The concern of the impact of the chemical constituents present in the waste on the emissions/ product quality.

(b)There are more than 20,000 waste streams that are co-processed globally. In the past 10 years, we have been able to complete trial of less than 100 waste streams. By the waste by waste trial approval process, we will never be able to move ahead.

(c)Even if a waste stream is approved for co-processing through trial, its waste characteristics are never constant. They vary from batch to batch and from time to time.

(d)While undertaking the co-processing of approved waste streams, they get blended to a new chemical composition which is completely different from all individual ones.

(e)The very purpose of implementing waste stream approval based on trial gets completely defeated.

Hence, the trial based waste by waste permitting process is not relevant at all.

Based on experience gained in India and international best practices, the desired regulatory process of approval needs to be based on (i) emission standards for cement kilns conducting co-processing, (ii) adequate infrastructure to safely handle and store wastes, (iii) appropriate laboratory facility to achieve desired input control, (iv) proper systems to monitor & control the input rates and (v) well established operational procedures for health and safety. These processes will secure the same level of environmental protection at Indian cement plants as the current EU and US regulations.

3.Allow interstate movement of hazardous wastes for cement kiln co-processing with letter of intimation to concerned SPCBs.

With this provision, waste can be moved at economically attractive distances across the states.

The pricing of waste management services is a key factor, both to ensure waste minimisation at source (to reduce disposal costs for waste generators) as well as to ensure low cost to cement manufacturers (encouraging them to install the infrastructure needed for proper handling, storage and firing at their premises) for increased TSR. The ?polluter-pays? principle should be the basis for the economic and financial analysis of waste utilisation.

II.Non-hazardous waste
To allow cement kilns, that are complying with the prescribed emission standards for co-processing, to co-process of all kinds of non-hazardous wastes in cement kilns through intimation to SPCBs.

III.RDF from MSW
To implement amendment in draft Municipal Solid Wastes (Management and Handling) Rules, 2015 to ensure that the segregated combustible fraction is not allowed to be landfilled but is converted into Refused Derived Fuel (RDF) that is suitable for use as alternate fuel in cement plants and other suitable thermal processes. Also, to institute fiscal measures that will facilitate building large number of pre-processing facilities to convert wastes into AFRs and MSW into RDF.

IV.Shredded Tyres
Shredded tyres are used extensively in the cement industry as a supplementary fuel and MoEFFCC/CPCB may want to consider ways to increase the availability in India.

V.Biomass
Co-processing of biomass leads to complete energy recovery and this process is much more energy efficient, even compared to biomass-based power plants. Incentives should be given for biomass utilisation in cement kilns akin to that given for biomass-based power plants.

International co-operation for assimilating Technology, Skills and Policy (TSP) framework to leap-frog
Co-processing in cement kilns is a widely practiced activity in many countries for management of wastes. The technological infrastructure required for implementing large scale co-processing is well established and operated. The skills are well developed with the operating teams to operate the kilns with large quantum of wastes and produce the right quality cement product. In these countries, the legislative processes are also designed and practiced with preference to recovery technologies such as co-processing. The TSR in these countries is therefore very high.

Our experience in the country of the past 10 years suggests to us that AFR co-processing growth takes place with a reasonable learning curve and support available from the international co-operation helps a lot. The Indian cement industry is already collaborating with several knowledge partners in utilising this lever for using large amount of wastes as AFRs in the cement kilns. Several international cement players that are implementing large scale co-processing in their plants in different countries, such as LafargeHolcim, Hiedelberg, CRH, VICAT, Italicement, etc are already operating in India and several Indian cement players such as Ultratech, Dalmia, etc., are also sourcing international co-operation in bridging the technical and skill gap in implementing large scale utilisation of AFRs.

CPCB has been closely working with the Norwegian research organisation SINTEF for the last few years and has been able to contribute towards building capacity and confidence among various stakeholders on the viability of safe and sound co-processing. We consider that co-operation of Indian policy-making bodies with agencies like SINTEF, who have been working closely with the authorities and industries in such countries, can facilitate quicker assessment of the policy level hurdles encountered in implementing large scale management of wastes as AFRs through co-processing and implementing fitting solutions to deal with them from the policy and operational considerations.

Low carbon technology roadmap
Table-1

Parameter Unit Base case Low demand High Demand
2010 2020 2030 2050 2020 2030 2050
Cement Production Mio TPA 217 416 598 780 492 848 1361
Clinker to Cement Ratio 0.74 0.7 0.64 0.58 0.7 0.64 0.58
Thermal Intensity of
clinker production
Kcal / Kg
Clinker
725 709 694 680 703 690 678
Alternative Fuel share
in total energy used
% 0.6 5 19 25 5 19 25
Coal conserved having CV
of 4,500 Kcal/Kg
Mio TPA 0.16 2.3 11.2 17.1 2.7 15.8 29.7
CO2 emission reduced Mio TPA 0.19 2.8 13.8 21.0 3.3 19.4 36.5

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Redefining Efficiency with Digitalisation

Published

on

By

Shares

Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.

The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.

The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.

Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.

Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.

Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.

Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.

Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.

About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe,
has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.

Continue Reading

Concrete

Digital Pathways for Sustainable Manufacturing

Published

on

By

Shares

Dr Y Chandri Naidu, Chief Technology Officer, Nextcem Consulting highlights how digital technologies are enabling Indian cement plants to improve efficiency, reduce emissions, and transition toward sustainable, low-carbon manufacturing.

Cement manufacturing is inherently resource- and energy-intensive due to high-temperature clinkerisation and extensive material handling and grinding operations. In India, where cement demand continues to grow in line with infrastructure development, producers must balance capacity expansion with sustainability commitments. Energy costs constitute a major share of operating expenditure, while process-related carbon dioxide emissions from limestone calcination remain unavoidable.
Traditional optimisation approaches, which are largely dependent on operator experience, static control logic and offline laboratory analysis, have reached their practical limits. This is especially evident when higher levels of alternative fuel and raw materials (AFR) are introduced or when raw material variability increases.
Digital technologies provide a systematic pathway to manage this complexity by enabling
real-time monitoring, predictive optimisation and integrated decision-making across cement manufacturing operations.
Digital cement manufacturing is enabled through a layered architecture integrating operational technology (OT) and information technology (IT). At the base are plant instrumentation, analysers, and automation systems, which generate continuous process data. This data is contextualised and analysed using advanced analytics and AI platforms, enabling predictive and prescriptive insights for operators and management.

Digital optimisation of energy efficiency

  • Thermal energy optimisation
    The kiln and calciner system accounts for approximately 60 per cent to 65 per cent of total energy consumption in an integrated cement plant. Digital optimisation focuses on reducing specific thermal energy consumption (STEC) while maintaining clinker quality and operational stability.
    Advanced Process Control (APC) stabilises critical parameters such as burning zone temperature, oxygen concentration, kiln feed rate and calciner residence time. By minimising process variability, APC reduces the need for conservative over-firing. Artificial intelligence further enhances optimisation by learning nonlinear relationships between raw mix chemistry, AFR characteristics, flame dynamics and heat consumption.
    Digital twins of kiln systems allow engineers to simulate operational scenarios such as increased AFR substitution, altered burner momentum or changes in raw mix burnability without operational risk. Indian cement plants adopting these solutions typically report STEC reductions in the range of 2 per cent to 5 per cent.
  • Electrical energy optimisation
    Electrical energy consumption in cement plants is dominated by grinding systems, fans and material transport equipment. Machine learning–based optimisation continuously adjusts mill parameters such as separator speed, grinding pressure and feed rate to minimise specific power consumption while maintaining product fineness.
    Predictive maintenance analytics identify inefficiencies caused by wear, fouling or imbalance in fans and motors. Plants implementing plant-wide electrical energy optimisation typically achieve
    3 per cent to 7 per cent reduction in specific power consumption, contributing to both cost savings and indirect CO2 reduction.

Digital enablement of AFR
AFR challenges in the Indian context: Indian cement plants increasingly utilise biomass, refuse-derived fuel (RDF), plastic waste and industrial by-products. However, variability in calorific value, moisture, particle size, chlorine and sulphur content introduces combustion instability, build-up formation and emission risks.
Digital AFR management: Digital platforms integrate real-time AFR quality data from online analysers with historical kiln performance data. Machine learning models predict combustion behaviour, flame stability and emission trends for different AFR combinations. Based on these predictions, fuel feed distribution, primary and secondary air ratios, and burner momentum are dynamically adjusted to ensure stable kiln operation. Digitally enabled AFR management in cement plants will result in increased thermal substitution rates by 5-15 percentage points, reduced fossil fuel dependency, and improved kiln stability.

Digital resource and raw material optimisation
Raw mix control: Raw material variability directly affects kiln operation and clinker quality. AI-driven raw mix optimisation systems continuously adjust feed proportions to maintain target chemical parameters such as Lime Saturation Factor (LSF), Silica Modulus (SM), and Alumina Modulus (AM). This reduces corrective material usage and improves kiln thermal efficiency.
Clinker factor reduction: Reducing clinker factor through supplementary cementitious materials (SCMs) such as fly ash, slag and calcined clay is a key decarbonisation lever. Digital models simulate blended cement performance, enabling optimisation of SCM proportions while maintaining strength and durability requirements.

Challenges and strategies for digital adoption
Key challenges in Indian cement plants include data quality limitations due to legacy instrumentation, resistance to algorithm-based decision-making, integration complexity across multiple OEM systems, and site-specific variability in raw materials and fuels.
Successful digital transformation requires strengthening the data foundation, prioritising high-impact use cases such as kiln APC and energy optimisation, adopting a human-in-the-loop approach, and deploying modular, scalable digital platforms with cybersecurity by design.

Future Outlook
Future digital cement plants will evolve toward autonomous optimisation, real-time carbon intensity tracking, and integration with emerging decarbonisation technologies such as carbon capture, utilisation and storage (CCUS). Digital platforms will also support ESG reporting and regulatory compliance.
Digital pathways offer a practical and scalable solution for sustainable cement manufacturing in India. By optimising energy consumption, enabling higher AFR substitution and improving resource efficiency, digital technologies deliver measurable environmental and economic benefits. With appropriate data infrastructure, organisational alignment and phased implementation, digital transformation will remain central to the Indian cement industry’s low-carbon transition.

About the author:
Dr Y Chandri Naidu is a cement industry professional with 30+ years of experience in process optimisation, quality control and quality assistance, energy conservation and sustainable manufacturing, across leading organisations including NCB, Ramco, Prism, Ultratech, HIL, NCL and Vedanta. He is known for guiding teams, developing innovative plant solutions and promoting environmentally responsible cement production. He is also passionate about mentoring professionals and advancing durable, resource efficient technologies for future of construction materials.

Continue Reading

Concrete

Turning Downtime into Actionable Intelligence

Published

on

By

Shares

Stoppage Insights instantly identifies root causes and maps their full operational impact.

In cement, mining and minerals processing operations, every unplanned stoppage equals lost production and reduced profitability. Yet identifying what caused a stoppage remains frustratingly complex. A single motor failure can trigger cascading interlocks and alarm floods, burying the root cause under layers of secondary events. Operators and maintenance teams waste valuable time tracing event chains when they should be solving problems. Until now.
Our latest innovation to our ECS Process Control Solution(1) eliminates this complexity. Stoppage Insights, available with the combined updates to our ECS/ControlCenter™ (ECS) software and ACESYS programming library, transforms stoppage events into clear, actionable intelligence. The system automatically identifies the root cause of every stoppage – whether triggered by alarms, interlocks, or operator actions – and maps all affected equipment. Operators can click any stopped motor’s faceplate to view what caused the shutdown instantly. The Stoppage UI provides a complete record of all stoppages with drill-down capabilities, replacing manual investigation with immediate answers.

Understanding root cause in Stoppage Insights
In Stoppage Insights, ‘root cause’ refers to the first alarm, interlock, or operator action detected by the control system. While this may not reveal the underlying mechanical, electrical or process failure that a maintenance team may later discover, it provides an actionable starting point for rapid troubleshooting and response. And this is where Stoppage Insights steps ahead of traditional first-out alarm systems (ISA 18.2). In this older type of system, the first alarm is identified in a group. This is useful, but limited, as it doesn’t show the complete cascade of events, distinguish between operator-initiated and alarm-triggered stoppages, or map downstream impacts. In contrast, Stoppage Insights provides complete transparency:

  • Comprehensive capture: Records both regular operator stops and alarm-triggered shutdowns.
  • Complete impact visibility: Maps all affected equipment automatically.
  • Contextual clarity: Eliminates manual tracing through alarm floods, saving critical response time.


David Campain, Global Product Manager for Process Control Systems, says, “Stoppage Insights takes fault analysis to the next level. Operators and maintenance engineers no longer need to trace complex event chains. They see the root cause clearly and can respond quickly.”

Driving results
1.Driving results for operations teams
Stoppage Insights maximises clarity to minimise downtime, enabling operators to:
• Rapidly identify root causes to shorten recovery time.
• View initiating events and all affected units in one intuitive interface.
• Access complete records of both planned and unplanned stoppages

  1. Driving results for maintenance and reliability teams
    Stoppage Insights helps prioritise work based on evidence, not guesswork:
    • Access structured stoppage data for reliability programmes.
    • Replace manual logging with automated, exportable records for CMMS, ERP or MES.(2)
    • Identify recurring issues and target preventive maintenance effectively.

  2. A future-proof and cybersecure foundation
    Our Stoppage Insights feature is built on the latest (version 9) update to our ACESYS advanced programming library. This industry-leading solution lies at the heart of the ECS process control system. Its structured approach enables fast engineering and consistent control logic across hardware platforms from Siemens, Schneider, Rockwell, and others.
    In addition to powering Stoppage Insights, ACESYS v9 positions the ECS system for open, interoperable architectures and future-proof automation. The same structured data used by Stoppage Insights supports AI-driven process control, providing the foundation for machine learning models and advanced analytics.
    The latest releases also respond to the growing risk of cyberattacks on industrial operational technology (OT) infrastructure, delivering robust cybersecurity. The latest ECS software update (version 9.2) is certified to IEC 62443-4-1 international cybersecurity standards, protecting your process operations and reducing system vulnerability.

What’s available now and what’s coming next?
The ECS/ControlCenter 9.2 and ACESYS 9 updates, featuring Stoppage Insights, are available now for:

  • Greenfield projects.
  • ECS system upgrades.
  • Brownfield replacement of competitor systems.
    Stoppage Insights will also soon integrate with our ECS/UptimeGo downtime analysis software. Stoppage records, including root cause identification and affected equipment, will flow seamlessly into UptimeGo for advanced analytics, trending and long-term reliability reporting. This integration creates a complete ecosystem for managing and improving plant uptime.

(1) The ECS Process Control Solution for cement, mining and minerals processing combines proven control strategies with modern automation architecture to optimise plant performance, reduce downtime and support operational excellence.
(2) CMMS refers to computerised maintenance management systems; ERP, to enterprise resource planning; and MES to manufacturing execution systems.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds