Connect with us

Technology

Technology trends in cement pyro system for pollution control

Published

on

Shares

On the backdrop of changes announced by the Ministry of Environment, Jayant Saha, a consultant takes stock of the situation and explains how the industry can prepare itself to face the challenge.

While using wastes from various sources, mainly as fuel, and also its inherent process requirements, cement plants face much adversity including environment pollution. This leads cement plants to undergo continuous technological advancements.

Most of the emissions are in the form of particulate matters, CO2, SOx, NOx and toxic matters containing mercury and other heavy metals and persistent organic pollutants. Almost all of chemical pollutants are generated in pyro section.

CO2 is produced through combustion, calcination, electrical energy consumption and indirectly through vehicles used by plant and plant personnel. To control CO2 generation BEE has introduced PAT scheme. These measures helped industry in reducing CO2 emission from 1.12 (in 1996) to 0.72 t of CO2 per t of cement. Some countries have taken mercury emission seriously and have started controlling it. Most mercury is present in gaseous phase as elemental or oxidized mercury – HgCl2. The common practice to reduce mercury is to increase the oxidized fraction by increasing chlorine content of fuel. Removal of oxidized mercury (typically 95 per cent) is easily done in wet FGD, SDA and CDS scrubbers. Removal of ~90 per cent of total mercury is possible by Br-PAC (Brominated Powdered Activated Carbon) injection added to the removal of oxidized Hg. PAC is injected into flue gas upstream of main filter. Mercury is absorbed on to the carbon and removed in a separate bag house to prevent recycling.

Recently, (August 25, 2014), the Ministry of Environment and Forests (MoEF) in India has introduced restriction on SOx (100 mg/Nm3) and NOx (600 mg/Nm3 for new plant – applicable from 01-06-2015 and 800 mg/Nm3 for old plants – applicable from 01-01-2016) emission. Monitored values are to be corrected to 10 per cent O2 and on dry basis. This led the need for special focus on cement pyro section technology/retrofit.

SOx Emission Control Technology
Emissions of SO2 are prominent in long kilns rather than energy efficient, dry process kiln systems.

Pyritic or organic sulphur gets burnt in the preheater upper cyclones at around 400-600oC forming SO2. Most of SO2 that escapes the preheater with dust is effectively collected if the gases are used in VRM and is re-introduced to the preheater with the kiln feed. Internal recirculation occurs when liberated SO2 gas in the kiln passes through the preheater and combines with the calcined raw meal and also alkalis in the lower cyclone stages, forming CaSO4 and alkali sulfates. Alkalis in excess of chloride combine with sulphur to form more stable alkali sulfates. Sulphur in excess of alkalis forms CaSO4 which has a higher evaporation factor. Optimum molecular ratio between sulphur and alkalis in the kiln system can be expressed as (SO3 / Alk)Optimum = (SO3/ 80)/((K2O/94) + 0.5 * (Na2O/62)) If the ratio exceeds 1.1 "excess" sulphur (E. S.) is available to combine with CaO. E. S. is expressed in grams SO3 per 100 kg clinker and calculated as:

E. S. = 1000 * SO3 GCo 850 * K2O – 650 * Na2O
For easy and hard burning raw mix, this figure should not exceed 600 and 250 gm SO3/100 kg clinker respectively to maintain smooth kiln operation.

The dissociation of alkali sulphate compounds can best be described as AlkGCoSO4 + heat = AlkGCoO + SO2 + ?O2

The equilibrium shifts to the left favouring the formation of Alk-SO4 with increasing O2 and SO2 partial pressure. For increasing oxygen content up to approximately 2 per cent, volatility of sulphur is progressively reduced while increasing the oxygen beyond 2 per cent has a limited effect.

CaSO4 starts to decompose slowly at temperatures above 1220oC.
CaSO4 + heat = CaO + SO2 + ?O2
In a reducing atmosphere (presence of C and CO), both alkali and calcium sulphates decompose releasing SO2.

Generated SO2 travels back to the preheater. With higher sulphur recirculation the plugging problems in the preheater increase significantly. The location of spreader box on kiln riser plays critical importance. If it is possible to place the spreader on the smoke chamber shoulder, the introduced hot meal will absorb the SO2 before it sticks to the riser wall. Thus a higher SO2 content in the smoke gas is allowable, which means that kiln can run with higher excess sulphur, sometimes up to more than 1000 gm/100 kg clinker; however, with consequences of increasing tendency to form dusty clinker.

The introduced sulphur ends up in the clinker if not removed elsewhere. Typically, the limit for sulphur in clinker is 1.6 per cent, as SO3, to assure good quality.

Removal of Sulphur Dioxide

  • There are methods to remove and prevent the formation of SO2 by modifying or controlling conditions in the cement pyro-processing systems.
  • Sufficient oxygen level can be maintained in exhaust gases to stabilise alkali and calcium sulphate compounds formed in the process.
  • The burning zone flame shape can be modified to reduce the possibility of forming localised reducing conditions.
  • Raw materials can be altered to affect the alkali/sulphur molar ratio and also to affect absence of sulphide sulphur, organic sulphide or carbon, may reduce SO2 emissions. Increasing alkali input may not be possible because of product quality limits on total alkali concentration in the cement.
  • Addition of lime in kiln feed helps in absorbing released SO2 to form CaSO4 and gets back to the system.
  • Installation of SOx reduction cyclone directs naturally occurring CaO present in the pyro system, especially in the calciner, to the upper stages. The dust laden gas from the calciner (near the outlet) is withdrawn and passed through an LP cyclone located towards the top of the preheater. The separated dust, rich in CaO, is fed to cyclone 1 or 2. The gas from this cyclone goes to stage two or three cyclone inlet.
  • Scrubber technologies that capture SO2 after the kiln system can be divided into four classes, dry reagent injection, hot meal injection, lime/limestone spray dryer absorber, and wet scrubbers.

NOx Emission Control Technology
NOx (NO and NO2) is formed in cement pyro system by following mechanisms.

Thermal NOx Formation
Thermal NOx is formed at a temperature greater than about 1200?C by direct oxidation of atmospheric nitrogen. Since the flame temperature in cement rotary kiln is about 2000?C, considerable amount of thermal NO is generated.

The thermal reaction between oxygen and nitrogen to form NO takes place as per Zeldovic reaction:

O. + N2 ? NO + N.
N. + O2 ? NO + O.

NO formation increases exponentially with temperature and in the presence of excess oxygen. Factors affecting the concentration of NO in the kiln gases are:

  • Maximum theoretical (adiabatic) flame temperature
  • Flame shape (burner type)
  • Excess air rate
  • Maximum necessary material temperature
  • Material retention time in burning zone
  • Gas retention time in burning zone
  • Kiln loading (TPD/ m3) Lower secondary air temperatures and presence of dust increases NOx formation. Dust reduces radiation from the flame which in turn reduces heat transfer to material.

Fuel NOx Formation
NOx also results from the oxidation of nitrogen compounds present in fuel, other than gaseous. The reaction normally takes place at relatively lower temperature, less than 1200?C.

Fuel NOx formation normally depends on:

  • Nitrogen content in the fuel
  • Volatile content in the (solid) fuel
  • Oxygen level in the combustion zone
  • Initial NO concentration in the combustion gas
  • Temperature in the secondary combustion zone

A higher volatile content in the fuel reduces fuel nitrogen conversion to NO. At temperatures between 800 -?C and 1100 -?C, the following reactions may take place:

N + O ? NO (1)
N + NO ? N2 + O (2)
Since the rate of reaction 2 increases more rapidly than the rate of reaction 1 as the temperature increases, higher temperatures (between 800?C and 1100?C) may reduce NOx emissions in secondary combustion zones.

Prompt NOx Formation
Prompt NOx is formed by fuel-derived radicals, such as CH and CH2, reacting with N2 in hydrocarbon flames. The overall contribution of prompt NOx to total NO is relatively small.

In rotary kiln, thermal NOx generation is dominant whereas in the calciner and in the secondary combustion zone where combustion temperature is up to 1200 -?C fuel NOx is major contributor.

Influence of Kiln System on NOx Emission
Kiln system in cement plant is normally one of the following.
-Pre-heater kiln with grate or planetary cooler
-In-Line Calciner (ILC) kiln
-Separate Line Calciner (SLC) kiln.

In pre-heater kiln the NOx emission is determined exclusively by the condition in the kiln burning zone.

In ILC kiln system the kiln exit gases having NO pass through the calciner. CH radicals and nitrogen from the calciner fuel reacts with kiln NOx to reduce it to free nitrogen. Balance nitrogen compound in calciner fuel during combustion forms NOx. The result may be a net production as well as net reduction of NO in calciner.

In SLC kiln system the combustion in calciner takes place in pure air. When using solid fuel like coal up to 50 per cent of nitrogen compounds in the fuel may get converted into NO. Thermal NO from kiln leaves kiln string without any opportunity to reduce/reburn and gets added to NOx from calciner string. SLC kilns therefore, have higher NOx emissions from stack compared to ILC kiln system.

Control Techniques for NOx Reduction
Typical NOx emission in older technologies can be as high as 1800 – 2000 mg/Nm3, while average emission value in modern plants is around 1200 mg/Nm3.

The reduction of NOx emissions from cement pyro system can be done in two ways.

Primary NOx Reduction Measures
In primary reduction measures existing process is modified to reduce the formation of NOx, The following ways are very common.

  • Optimisation of clinker burning process.
  • Automatic kiln control system or Expert system.
  • Use of Low NOx burner to allow low primary air and to control flame flow pattern.
  • Addition of water to the flame or fuel of the main burner.
  • Staged Combustion in Precalciner.

In calciner staged combustion, fuel is first burned under reducing conditions to reduce NOx and then remaining fuel burns under oxidising conditions to complete the combustion. Introduction of raw meal allows control of calciner temperature. Through these mechanisms, both fuel NOx and thermal NOx are controlled.

The reaction: 2CO+ 2NO ? 2CO2 + N2
Primary reduction measures can reduce NOx level up to 20 per cent.

Secondary NOx Reduction Measures (SNCR)
In Secondary reduction measure a separate gas cleaning unit is added. Selective Non Catalytic Reduction of NO with NH3 was developed by Exxon Research & Engineering Co., USA. The reagent, typically NH3 or urea, is injected into the kiln system at a location with an appropriate temperature window (870?C to 1100?C). The temperature is critical, at higher temperatures the reagents will form additional NOx whereas at lower temperatures the reactions proceed slowly and substantial amounts of unreacted ammonia will escape.

Ammonia and Urea Dissociation and Reduction Pathways have been shown in the Figure 1.

The performance of SNCR system depends on
-Residence time available at optimum temperature.
-Degree of mixing between injected reagent and combustion gases
-Uncontrolled NOx concentration and oxygen level.
-Molar ratio of injected reagent to uncontrolled NOx.

The performance also depends on the efficiency of installed injection system. ERC Chemtrol is one of the leading De-NOx system suppliers and claims a very high efficiency of their system.

SNCR system can easily be installed in pyro system and should be installed after taking primary reduction measures. This can reduce NOx up to 80 per cent.

Authored by Jayanta Saha, Cement Process Consultant (Freelancer) based in Navi Mumbai

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

From Vision to Action: Fornnax Global Growth Strategy for 2026

Published

on

By

Shares

Jignesh Kundaria, Director & CEO, Fornnax Recycling Technology

As 2026 begins, Fornnax is accelerating its global growth through strategic expansion, large-scale export-led installations, and technology-driven innovation across multiple recycling streams. Backed by manufacturing scale-up and a strong people-first culture, the company aims to lead sustainable, high-capacity recycling solutions worldwide.

As 2026 begins, Fornnax stands at a pivotal stage in its growth journey. Over the past few years, the company has built a strong foundation rooted in engineering excellence, innovation, and a firm commitment to sustainable recycling. The focus ahead is clear: to grow faster, stronger, and on a truly global scale.

“Our 2026 strategy is driven by four key priorities,” explains Mr. Jignesh Kundaria, Director & CEO of Fornnax.

First, Global Expansion

We will strengthen our presence in major markets such as Europe, Australia, and the GCC, while continuing to grow across our existing regions. By aligning with local regulations and customer requirements, we aim to establish ourselves as a trusted global partner for advanced recycling solutions.

A major milestone in this journey will be export-led global installations. In 2026, we will commission Europe’s highest-capacity shredding line, reinforcing our leadership in high-capacity recycling solutions.

Second, Product Innovation and Technology Leadership

Innovation remains at the heart of our vision to become a global leader in recycling technology by 2030. Our focus is on developing solutions that are state-of-the-art, economical, efficient, reliable, and environmentally responsible.

Building on a decade-long legacy in tyre recycling, we have expanded our portfolio into new recycling applications, including municipal solid waste (MSW), e-waste, cable, and aluminium recycling. This diversification has already created strong momentum across the industry, marked by key milestones scheduled to become operational this year, such as:

  • Installation of India’s largest e-waste and cable recycling line.
  • Commissioning of a high-capacity MSW RDF recycling line.

“Sustainable growth must be scalable and profitable,” emphasizes Mr. Kundaria. In 2026, Fornnax will complete Phase One of our capacity expansion by establishing the world’s largest shredding equipment manufacturing facility. This 23-acre manufacturing unit, scheduled for completion in July 2026, will significantly enhance our production capability and global delivery capacity.

Alongside this, we will continue to improve efficiency across manufacturing, supply chain, and service operations, while strengthening our service network across India, Australia, and Europe to ensure faster and more reliable customer support.

Finally: People and Culture

“People remain the foundation of Fornnax’s success. We will continue to invest in talent, leadership development, and a culture built on ownership, collaboration, and continuous improvement,” states Mr. Kundaria.

With a strong commitment to sustainability in everything we do, our ambition is not only to grow our business, but also to actively support the circular economy and contribute to a cleaner, more sustainable future.

Guided by a shared vision and disciplined execution, 2026 is set to be a defining year for us, driven by innovation across diverse recycling applications, large-scale global installations, and manufacturing excellence.

Continue Reading

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Trending News