Environment
Optimising Energy Efficiency
Published
10 years agoon
By
adminThe efforts of Indian cement industry moving towards greater sustainability are getting strengthened by the use of increasing clinker substitution, use of alternative fuels and installation of WHR systems.
Energy efficient cement plants in the country are comparable to the best cement plants in the world. In India, these modern plants co-exist with older plants with lower capacities and obsolete technologies, and the poor performance of some of the plants brings down the average. The average electrical energy consumption in India is around 97 kWh/tonne of cement (OPC) whereas the best achievement is around 77 kWh/tonne of cement (OPC). Similarly, average thermal energy consumption is around 770 kcal/kg of clinker, whereas the best figures are around 680 kcal/kg of clinker.
Challenges
Even in this era of consolidation and acquisitions, the major challenge that dents the healthy growth of the cement industry is the sheer lack of demand; the realty and housing sector which consumes over 67 per cent of the total production is still not out of woods, nor there is a demand pull from the infra sector, as has been expected. The average capacity utilisation is around 70-72 per cent of the total installed capacity. This adversely impacts the energy efficiency drive by the cement manufacturers as running the plants at 70-80 per cent of installed capacity will drive out any of the benefits perceived in installing good equipment or carrying out energy management drives.
Sustained energy efficiency is possible only when plants run continuously with hundred per cent runtime and greater than hundred per cent production factor. Says Jagdish Chandra Toshniwal, Executive Director, Wonder Cement, ?It is absolutely right that the plant runs efficiently when it is operating at its full capacity. Continuous running of a plant is extremely important for energy efficiency as well as for lower maintenance cost. The inefficiency creeps in when it runs below certain optimum level and every plant knows, what its optimum level is. To have lowest cost of operation it is ideal to run the plant between 90 to 105 per cent capacity. Beyond 105 per cent capacity utilisation, the plant starts consuming more power and fuel. Where as anything lower than 90 per cent, your operational cost increases. When we are constrained to operate below 90 per cent, may be because of market conditions, we have to compromise on energy efficiency parameters. Also it is important to note that the maintenance cost is the lowest when we run the plant; under slightly stretched condition, say 105 per cent capacity.?
Says Dr. Suchismita Bhattacharya, Head – Process, Penta India Cement & Minerals, ?State of the art dry process cement plants are designed for specific energy consumption of around 697 kcal/kg clinker and around 90 kWh/tonne of OPC within the boundry of the cement factory from raw material storage to cement despatch. Having said that, achieving such levels in regular operation depends on various factors such as run time and capacity utilisation. Hence it is important to maintain at least 95 per cent of design production levels to take advantages of the new technologies. In some cases, use of variable frequency drives in certain equipment such as process fans may allow one to operate efficiently even at lower capacity levels. In the last few years, as the plants have been running at 60-70 per cent of installed capacity, higher operating costs per unit of production have been observed.?
Says Prashant K Tripathy, Executive Director – Productions & Processes, Dalmia Cement Bharat Ltd, ?Frequent stoppages and restart causes loss of power and fuel, both. Currently the cement demand is sluggish and the industry is awaiting a pickup in cement consumption to operate the plants efficiently at full capacity.?
Advantage AFR
Another major challenge from the energy efficiency front is the low thermal substitution rate by use of alternative fuels and raw materials (AFR). Even though the Indian cement industry has made a significant improvement in energy efficiency through various measures, use of AFR, a major potential area for improvement, is still in its nascent stage; the present thermal substitution rate by use of AFR being in the range of 0.5 to 1 per cent whereas developed countries achieved as high as 40 per cent TSR.
Says KN Rao, Director, Environment and Energy Conservation, ACC Ltd, ?ACC has been using successfully close to half a million tonnes of alternative fuels and raw materials annually and hope to increase substantially this quantity in the coming years as necessary infrastructure has been created in most of the plants. This initiative is helping the entire country for safe and sustainable disposal of the hazardous waste and non hazardous waste of various industries and municipal solid waste and helping the country to achieve energy security and minimising the GHG footprint of the country.?
Dr. Suchismita adds, ?Alternate fuels and refused derived fuels have considerable scope in India. It is possible to reduce the gate to gate energy consumption of renewable fuels by substituting with such fuels. In India some of the plant owners have achieved 10-15 per cent substitution. However a certain amount of capital investment in fuel handling facilities within the cement plant, fuel firing technology,selection of burner, calciner design, refractory selection and laboratory automation may be warranted. Dealing with the varying nature of the fuel will require expert adjustments in fuel mix. Another hurdle in India is that waste derived fuel is not available from Municipalities in an organised manner. However as Europe has shown the way, over 80 per cent substitution is possible all the variables can be dealt with as long as the management shows the will to use alternate fuel.?
Says Toshniwal, ?In fact the time is ripe to start initiating action in that direction. The leading companies like ACC and Ambuja are the torch bearers. We shall follow them. On the role of regulators, it is changing very fast but there seems to be some confusion. For getting approval we have to go through several layers. The agencies involved are CPCB and State Pollution Board. Sometimes they are not clear as to who will approve what? The procedures have been simplified because even the state officials are realising that waste disposal is a great problem today. There is a positive side, as the mind set of government officials, pollution control board is changing.? Avers Tripathy, ?Assured long term availability of AFR to justify infrastructure related capex is the main challenge. Requirements of environment permits for each new AFR is a major issue. For small volumes the cost of trials needed is not justified. Land filling is still the preferred option for a large volume of hazardous waste and municipal solid waste.No economic model is available to derive cement quality RDF from MSW for use in cement plants as AFR.?
Optimising clinker content
The cement industry being a highly energy-intensive sector, most of the major players have been adopting the best manufacturing practices right from mining to production to sales and distribution, across all units and disciplines by optimising energy, natural resources and technology. The Indian cement industry, over the years, has employed the best available technology for production; thanks to a high degree of blended cement utilisation, Indian cement producers are at the forefront of fuel and electrical energy consumption on a per tonne- of- product basis. An additional benefit in terms of sustainability is the lower per tonne CO2 emission. Stricter regulatory requirements are leading to greener technologies, and they in turn, lead to further energy efficiency.
From the energy efficiency perspective, consistent availability of quality fly ash is another constraint as it impacts optimisation of clinker component per tonne of cement produced by using fly ash. According to Rao, there is a greater scope of using fly ash and other cementitious materials in cement manufacturing by actively promoting blended cements and composite cements. Present Indian Standards for PPC allows 35 per cent absorption of flyash in cement manufacturing process. Similarly Indian Standards for Portland Slag Cement (PSC) which allows 65 per cent absorption of slag in cement manufacturing process. Composite cement standards which are currently under draft stage are expected to permit higher usage of pozzolona materials in cement manufacturing. The above initiatives will result in lower consumption of clinker in cement manufacturing. Since the clinker manufacturing involves huge amount of thermal energy, electrical energy consumption and CO2 emissions, any reduction in the clinker content in cement will reduce specific thermal energy, electrical energy and CO2 emission in cement manufacturing.
Says Rao, ?The cement industry is the biggest consumer of fly ash in India and ACC is the leading manufacturer of blended cements. ACC is consuming 4.4 million tonne of fly ash and 2.8 million tonne slag annually for production of blended cement. Use of slag and fly ash in cement manufacture helps the steel industry and power plants to dispose of their waste in an environment friendly manner while reducing the GHG emission from the cement industry and also minimising the use of limited resources like limestone.?
Low-carbon technology
Following the global Cement Technology Roadmap in 2009 developed in a partnership between WBCSD CSI and the International Energy Agency (IEA), nine CSI members in India again joined hands with IEA to develop a Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry. The initiative in India is supported by the International Finance Corporation (IFC), a member of the World Bank Group. The India roadmap, launched in February 2013, outlines a low-carbon growth pathway for the Indian cement industry that could lead to carbon intensity reductions of 45 per cent by 2050. It proposes that these reductions could come from increased clinker substitution and alternative fuel use; further improvements to energy efficiency, and the development and widespread implementation of newer technologies.
Says Rao, ?We have developed many products which have a low carbon footprint and energy foot print aligning with our sustainable development road map. Our blended cement CDM project is the biggest CDM project in the cement sector in the country with annual CO2 emission reduction potential of approximately of 200,000 tonne of CO2/year.?
Says Prashant, ?In all our units we have taken the initiative to maximise the use of AFR as it is a key lever to reduce CO2 emissions. We are proud member of Cement Sustainability Initiative (CSI) and are tackling all challenges to use AFR as per CSI guidelines/charter.?
Waste heat recovery
According to Sunil Kumar Singh, Director – Metals, Mining & Minerals, Schneider Electric India, even though the investment is high for WHR applications, it is the major energy efficiency project on thermal side. He says, ?Power generation using WHR results in considerable savings and also Indian cement industry can take the advantage under PAT cycle.?
Speaking about the scope of WHR Dr. Suchismita had this to say. ?WHR projects were adopted by Indian owners in a big way during the last four years. However there are mixed experiences regarding the successful implementation of these projects. This is dissuading some of the owners who were on the fence from going ahead and finalising their planned WHR projects. In some of the WHRS projects, the process design basis was not selected properly and as a result, there were over promise of power generation. Moreover, equipment selection has to be made properly and workmanship has to be perfect when it comes to boiler tubes, etc. Steam Rankine cycle based power generation is a fairly mature technology and the technology providers have suited their designs for the exhausted gas of the cement plants. Newer technologies based on the Organic Rankine cycle and the Ammonia-based Kalina cycle may take a while to pick up as they are the more costly options. Says Rao, ?Typically, clinkerisation lines, in all cement plants, have a potential to generate power by utilising the waste heat from pre-heater and cooler gases using low pressure boilers and turbine. A 7.5 MW WHR system has been installed at our Gagal plant in Himachal Pradesh in 2014. We have plans to implement similar projects in other cement plant of ACC.? Speaking about the challenges of installing WHR system, Chander K, Technology Manager, India Operations Center, Process Automation, ABB India, says, ?High initial capital investment is almost always a deterrent to employing WHR systems. However, the benefits realised over a longer term in terms of utilising waste heat for generating power will pay off the high initial costs.?
Plant & equipment
The amount of energy saving varies on a case-to-case basis depending on the actual selection of process and equipment, quality and consistency of fuel, raw material characteristics, etc. However, it is important to understand here that long-term plant energy efficiency cannot be guaranteed based on the mere selection of the most efficient individual equipment alone. Rather, over a long term, energy (fuel and power) efficiency is largely driven by uniformity of the kiln feed chemistry, mastery of the burning zone which is primarily a kiln operation, and plant reliability factor i.e, avoiding stoppages due to incidents; all this in turn, relates to plant preventive maintenance.
Says Chander, ?The energy efficiency of cement production strongly depends on the process used to produce the clinker, the main component in cement manufacturing and the type of kiln. Dry kilns with pre-heaters and pre-calciners are the most efficient. The most efficient technologies used to produce cement are found in Japan, Mexico and in European countries, whereas the technologies used in Asian and North American countries are less efficient. Pre-heater, kiln and cooler section, raw mill, cement mill and coal mill are areas where tremendous scope is available in terms of energy savings.?
According to Singh on electrical side most of the cement plants have installed updated technology and process equipments. It is mainly grinding mill circuits, process fans and material conveying method which will determine the energy efficiency of the plant. Singh explains, ?The plants are considered to be energy efficient if they adopt the following:
Using vertical roller mills with full capacity utilisation and a high efficiency separator, ensuring minimum air ingress and pressure drop in circuit
Using process fans of high operating efficiency and using drives for flow control
Using mechanical conveying for material transport.
Utilising a vertical roller mill or roll press circuit in finish grinding mode for raw material grinding is the industry norm today, and this makes for a significant energy cost reduction when compared to the traditional closed circuit ball mill system. Likewise, for coal grinding, a vertical mill is used, and for the energy- intensive finish grinding process, the ball mill plus roll press system is widely popular. In specific cases where slag grinding is involved with high per centage moisture, the VRM technology for finish grinding is used. High efficiency separators are the standard today for all milling systems.
As regards the pyro-processing area, Indian cement producers continuously strive to achieve the lowest specific fuel consumption along with high power savings. High efficiency fourth- generation grate coolers are being widely used; they provide high recuperation efficiency along with lower maintenance interventions. As the total cooling air requirement reduces from the earlier 2.2 Nm3/kg clinker to say, 1.8 Nm3/kg clinker, there is a lot of savings through reduced exhaust air and fans` power consumption. To achieve lower fuel consumption, six stage pre-heater systems are the popular choice, along with in- line calciners. Advanced low NOx technologies are used in many cement plants. As regards process fans, a static efficiency = 82 per cent and use of variable speed drives reduces power consumption.
Towards sustainability
Sustainability awareness has picked up momentum in recent years in the cement industry, and several efforts are on by both cement manufacturers and major plant and machinery and auxiliary equipment manufacturers to integrate sustainability issues, essentially in energy conservation, resource optimisation and environmental planning, with business plans and reviews. For the cement industry, the major focus areas for sustainability are improving thermal energy efficiency and process technology, optimising fuel composition, including the use of waste as fuel, waste heat recovery, reduction in clinker factor, especially through increased rates of blending, and renewable energy. It is heartening to note that most of the cement companies have developed specific initiatives and road maps to reduce their organisational carbon footprint.
AGITH G ANTONY
ENERGY SAVING MEASURES
- Reduction of pressure drop of preheater tower
- Proper selection and operation of cooler,
- Improve the burner and operation.
- Improve raw mix design and its burnability
- Reduce raw material feed size especially for ball mill by close circuiting of crusher/installation of pre-grinder
- Improvement in plant productivity
- Reduce compressed air consumption and improve the pipe line routing.
- Improve fan efficiency: Low operating efficiency of fan is mainly due to wrong selection of fan type and its operating point being far off from the design point.
- Reduction in leakages across the system
- Reduction of the downtime/breakdown of the machine by proper maintenance.
- Improve the layout of the plant
- Any other case specific solution
Courtesy: Penta India
CASE STUDY: ABB
We received the first major order in the energy efficiency domain from Holcim in India, to improve specific power consumption of their cement plants. The solution offered included ACS 5000 and ACS 2000 range of 6.6 kV medium voltage (MV) drives that enhance energy efficiency at three plants, replacing existing damper controls. There is a huge potential to further enhance the efficiency by providing the MV drives for other process critical applications like preheater fans, mill separator fans, cooler fans in cement production area and also extend it to captive power plants to cover boiler feed pump (BFP), primary air and secondary air (PA/SA) fans and induced draft (ID) fans. Fans in the cement industry are usually large and consume a major part of electrical energy. Traditionally, Indian cement producers use cascade converters ? also called Slip Power Recovery Systems (SPRS) – to control the speed of process fans. However, due to inherent limitations of SPRS, such as operation in weak networks and higher harmonics, they are now considering the variable speed drive (VSD) solution. With the use of VSDs, the energy consumption can be reduced from 90 kWHs/tonne to about 70 kWHs/tonne of cement produced.
– Chander K, Technology Manager, India Operations Center, Process Automation, ABB India
Partha Dash, Managing Director, Moglix, discusses how India’s cement industry, a key player in the country’s construction growth, is at a critical juncture as it faces the challenge of balancing expansion with sustainable practices.
According to research by construction blog Bimhow, the construction sector contributes to 23 per cent of air pollution, 50 per cent of the climatic change, 40 per cent of drinking water pollution, and 50 per cent of landfill wastes. Over the last decade cement has been one ubiquitous element in India’s construction growth story. As the world’s second-largest producer, we are seeing an impressive growth trajectory. Major players like Birla, Adani, Dalmia Bharat, JK Cement and Shree Cement are expanding fast, with plans to add 150-160 million tonnes of capacity over the next five years. This follows a substantial increase of 120 million tonnes in the past five years, pushing India’s total capacity to around 600 million tonnes. But with all this expansion, we have got a big question – How do we ensure sustainable procurement practices, in such an energy dependent industry?
Energy-intensive nature of cement production
Making cement takes a lot of energy. Process starts with limestone being mined, crushed, and grounded, using about 5-6 per cent of the total energy. The biggest energy use happens during clinker production, where around 94-95 per cent of the energy is used. Here is where limestone is heated to very high temperatures in a kiln, which needs a lot of energy from fossil fuels like coal and pet coke. Electricity is also used to run equipment like fans and kiln drives.
Once the clinker is made, it’s ground into cement. This grinding process uses another 5-6 per cent of the energy and usually happens at facilities close to where the cement is needed. Facilities that handle both clinker production and grinding in one place are generally more energy-efficient. Many of these places use coal-powered plants to supply the heat needed for the kilns, keeping production steady.
Transitioning to bulk cement
Making cement use more efficient is key to reducing the industry’s carbon footprint. In India, as per research by World Economic Forum around 75-80 per cent of cement is sold in 50kg bags to small-scale builders and individuals. But there’s often little insight into how this bagged cement is used. Research from the World Economic Forum also shows that about 40 per cent of this cement is mixed by hand. Builders sometimes use more cement than needed, thinking it will make the structure stronger, which increases emissions.
It’s crucial to educate these small-scale users about using cement efficiently. Builders need accurate information on mixing ratios and should be encouraged to adopt design techniques that use less cement. One idea suggested in the report is to put embodied carbon labels on cement bags to provide this information, helping to promote more sustainable practices at the grassroots level.
On the flip side, bulk cement, which now makes up 20-25 per cent of India’s cement use, has its own set of challenges and opportunities. Bulk cement is often used for large-scale projects that need high-strength concrete, which tends to be more carbon-intensive. However, it also makes it easier to mix in supplementary cementitious materials (SCM), which can reduce the carbon intensity of the cement. As bulk cement use grows, especially in big infrastructure projects, balancing structural needs with lower-carbon solutions will be crucial.
Challenges in sustainable procurement
The cement industry finds it hard to adopt sustainable procurement because many companies aren’t fully on board with it. Sometimes, sustainability isn’t a big focus for the company, which means top management doesn’t fully support it. This lack of support slows down collaboration with environmental experts and limits the adoption of green practices. Additionally, many clients still prefer traditional materials, which means there’s less demand for sustainable options.
In terms of knowledge and innovation, there’s a gap in understanding how to incorporate green procurement into existing practices. Many companies aren’t fully aware of the benefits of adopting green strategies or getting environmental certifications. This lack of knowledge also affects the public sector, where innovation in sustainable practices is often held back due to a shortage of technical support and experts.
There’s also a common belief that green procurement is more expensive, which can be a significant barrier, especially when resources for sustainable products are limited. Awareness and readiness for green practices are still low. Many people don’t fully understand the importance of sustainable procurement in construction, and there’s a lack of information about the market for green materials. Without adequate training and a clear structure for green purchasing, it’s difficult for companies to fully commit to sustainability. Moreover, existing policies and regulations aren’t strong enough to drive real change and without enforcement and incentives, the availability of green materials remains limited.
Opportunities in sustainable procurement
To fully understand the opportunities in sustainable procurement, Indian construction companies need to make it a key part of their business approach. This requires strong support from top leadership, including CEOs and boards of directors. When sustainability is a central focus in a company’s goals, it not only improves environmental impact but also sets the company apart in the market. Firms that focus on green practices can attract clients who value sustainability.
Working together with industry, academic institutions and government bodies is crucial for advancing green procurement. Top institutions in India like IIMs and IITs should collaborate with agencies like the Central Pollution Control Board and the Ministry of Environment. These partnerships can help develop shared goals and standards, like ISO 14000 for Environmental Management Systems, and offer training programs across the country.
It’s crucial to help clients understand how green buildings can save money over time. These sustainable structures not only cut down on running costs but also enhance the quality of life for those who live or work in them. Organisations such as the Construction Federation of India and the Builders Association of India should promote green products, which can drive demand and reduce costs by boosting production.
The government’s role is also vital. Programmes like the Pradhan Mantri Awas Yojana should focus on using green materials to show that sustainable construction can be affordable. To encourage use of sustainable materials, giving incentives like tax breaks, just like the ones for electric vehicles, could make a big difference.
Establishing a national certification for green procurement professionals, backed by organisations like the Indian Green Building Council, can help create a skilled workforce that can lead sustainable practices in the construction industry. By seizing these opportunities, India can move toward a more sustainable future in construction.
India’s leadership in sustainable cement production
India has made impressive strides in sustainable cement production. As per a research report by JMK research and analytics in 2022, the global cement industry accounted for 26.8 per cent of industrial emissions, but Indian manufacturers have been proactive in reducing their carbon footprint. The same report also states that between 2017 and 2022, the industry cut its emissions intensity by 19.4 per cent, thanks to a rise in alternative materials like fly ash and slag Blended cements, which now make up 81 per cent of India’s output, are a big part of this progress.
Leading cement producers in India, including Ultratech Cement, Shree Cement and Dalmia Cement, have committed to reducing emissions by 20 per cent by 2030, with a long-term goal of achieving net-zero emissions by 2050. Recently, the industry introduced 150 electric trucks to reduce carbon footprints, though challenges like limited charging infrastructure and high costs remain. Still, this move is expected to cut logistics expenses by 25-40 per cent. The industry is also pushing for policy support to accelerate the adoption of electric trucks and further its sustainability goals. According to report published by India Brand and Equity Foundation, some of the major investments in renewable energy and energy storage solutions include:
- UltraTech Cement plans to deploy 500 electric trucks and 1,000 LNG/CNG vehicles by June 2025, cutting transport emissions by 680 tonnes annually. They aim to reach 85 per cent green energy use by 2030 and boost production capacity to 200 million tonnes.
- Shree Cement completed a 6.7 MW solar project in Haryana in September 2022.
- Dalmia Cement aims to produce 100 per cent low-carbon cement by 2031, supported by a $405 million carbon capture investment.
- JK Cement signed an agreement with PRESPL in October 2021 to increase the use of biomass and alternative fuels, reducing reliance on coal.
Is the impossible possible?
The Indian construction and cement industries are making prudent strides toward sustainability. Recent research shows a strong link between the use of renewable energy and economic growth, highlighting the importance of reducing reliance on traditional energy sources. The construction industry, which has a large environmental impact, must adopt greener practices to help reduce pollution and waste.
The Indian cement industry is leading the way, with plans to significantly increase its use of renewable energy by 2026. This shift not only helps reduce costs but also sets a positive example for other sectors. The focus on renewable energy, like solar and wind, and efforts to avoid new thermal power plants show a clear commitment to a more sustainable future.
As the cement industry continues to push for net-zero emissions by 2050, its proactive approach is setting a new standard. These efforts not only benefit the industry itself but also provide a roadmap for others to follow. By embracing greener practices, the cement industry is helping to pave the way for more sustainable and environmentally friendly procurement practices in India.
About the author:
Partha Dash, Managing Director, Moglix, is a sales and marketing professional with 15+ years of hands-on experience in shaping businesses especially in the emerging markets.
The circular economy offers a transformative approach for the cement industry, focusing on resource efficiency, waste minimisation, and sustainable practices. ICR finds out why integrating alternative materials, reducing carbon emissions and embracing innovative technologies, is crucial for the cement sector.
The circular economy is an innovative model aimed at minimising waste and maximising the use of resources by closing the loop of product life cycles through greater resource efficiency, recycling, and reusing. Unlike the traditional linear economy, which follows a ‘take-make-dispose’ pattern, the circular economy emphasises a restorative approach that seeks to maintain the value of products, materials and resources in the economy for as long as possible.
In the context of the cement industry, which is known for its resource-intensive processes and substantial environmental footprint, embracing circular economy principles is crucial. Cement production typically involves high energy consumption and generates significant greenhouse gas emissions. By adopting circular practices, the industry can reduce its reliance on virgin raw materials, lower waste and emissions and enhance overall sustainability.
The relevance of the circular economy in cement production is evident in several key areas:
• Resource efficiency: Utilising alternative and recycled materials, such as industrial by-products or waste, can significantly reduce the demand for raw materials and lower the environmental impact of cement production.
“Utilisation of alternative raw materials in the cement industry is a key strategy for enhancing sustainability and resource efficiency. Wonder Cement has substituted traditional raw materials like limestone with industrial by-products such as fly ash, marble slurry, chemical gypsum, red mud, mine telling reject, alumina slat, iron sludge, etc. Wonder Cement not only reduces its reliance on natural resources but also mitigates environmental impacts,” says Nitin Jain, Unit Head – Integrated Plant, Nimbahera, Wonder Cement.
“Low-carbon cement production is an innovative approach by Wonder Cement aimed to reduce the carbon footprint associated with traditional cement manufacturing. This process involves several strategies to minimise CO2 emissions, which are typically high due to the energy intensive nature of clinker production. The production of blended cement, Portland Pozzolana Cement (PPC) involves mixing clinker with supplementary materials like fly ash. This not only reduces CO2 emissions but also enhances the durability and performance of the cement,” he adds.
- Waste management: Implementing strategies to manage and repurpose waste products not only helps in minimising landfill use but also creates valuable resources for reuse in cement manufacturing.
- Energy optimisation: Circular economy practices promote energy-efficient technologies and the use of renewable energy sources, contributing to a reduction in carbon emissions associated with cement production.
- Product lifecycle: By focusing on the entire lifecycle of cement products, from production to disposal, the industry can develop more sustainable practices and innovative solutions for recycling and reusing cement-based materials.
Adopting a circular economy approach is not only essential for reducing the environmental impact of cement production but also for driving innovation, enhancing resource security, and fostering long-term economic resilience in the industry.
Use of Alternative and Recycled Materials
The cement industry is undergoing a transformative shift with the increasing adoption of alternative and recycled materials. This shift is driven by the
need to reduce environmental impact, conserve natural resources, and enhance the sustainability of cement production.
Alternative materials: Alternative materials, such as industrial by-products and waste materials, are increasingly being used as partial replacements for traditional raw materials like clinker.
Common examples include fly ash, slag, natural pozzolans, etc.
Recycling plays a crucial role in minimising waste and promoting a circular economy within the cement industry. Key recycled materials include:
- Recycled concrete aggregate (RCA): Reclaimed from demolished concrete structures, RCA can be used as a partial replacement for natural aggregates in new concrete, reducing the need for virgin resources.
- Construction and demolition waste: Incorporating materials from construction and demolition activities not only diverts waste from landfills but also provides valuable resources for cement production.
The use of these alternative and recycled materials helps in reducing the environmental footprint of cement production by lowering greenhouse gas emissions, conserving natural resources, and minimising waste. Furthermore, it supports the industry’s transition towards more sustainable and circular practices, contributing to the overall goal of reducing the sector’s impact on the environment.
According to an article published by McKinsey & Company in March 2023, the cement value chain is well positioned to create closed loops, or automatically regulated systems, for carbon dioxide, materials and minerals, and energy (see sidebar ‘Three categories of circular technologies in cement’). This entails circular economies, which are based on the principles of eliminating waste and pollution, circulating products and materials, and regenerating nature. With these points in mind, circularity can work jointly with reducing carbon emissions in cement production because circular technologies follow the paradigm of three crucial decarbonisation strategies: redesign, reduce and repurpose. According to the organisation’s estimates and expected carbon prices, circularity technologies will be value-positive by 2050, with some already more profitable than today’s business-as-usual solutions.
The report estimates show that an increased adoption of circular technologies could be linked to the emergence of new financial net-value pools worth up to roughly €110 billion by 2050, providing a new growth avenue for cement players that would otherwise face shrinking demand for their core business and significant external costs. Adopting circularity is required to mitigate at least 50 percent of this value at risk. Emerging new technologies and business models will create additional value to mitigate the residual value at risk.
Reducing and Managing Industrial Waste
Efficient waste management is critical for the sustainability of the cement industry. Reducing and managing industrial waste not only minimises environmental impact but also offers opportunities to turn waste into valuable resources. Here are some key strategies of waste-to-resource initiatives:
Waste minimisation at source
- Process optimisation: Implementing advanced technologies and practices to improve process efficiency can significantly reduce the amount of waste generated. Techniques such as precise control of raw material inputs and process conditions help minimise production losses.
- Cleaner production techniques: Adopting cleaner production methods, such as the use of less polluting raw materials and more efficient equipment, can reduce waste generation at the source.
Recycling and reuse
- Alternative fuels: Industrial waste, such as tire-derived fuel or biomass, can be used as alternative fuels in cement kilns. This not only helps in reducing the consumption of traditional fossil fuels but also diverts waste from landfills.
- By-product utilisation: By-products from other industries, such as fly ash or slag, can be integrated into cement production processes. These materials not only enhance the properties of the final product but also reduce the need for virgin raw materials.
Nitin Sharma, CEO and General Manager, Clariant IGL Specialty Chemicals (CISC), says, “As our climate gives us increasing and alarming signals of change, individuals and industries are looking for ways to reduce their environmental footprints, and the demand for bio-based chemicals is set to grow strongly in the coming years. In several applications, the use of petrochemicals and fossil carbon remains a significant issue. The transition to bio-based carbon chemistry represents a significant challenge for manufacturers.”
Waste-to-resource initiatives
- Recycled concrete aggregate (RCA): Demolished concrete can be crushed and recycled into aggregate for use in new concrete mixes. This reduces the demand for natural aggregates and decreases the volume of construction waste.
- Co-processing of waste: The cement industry is increasingly adopting co-processing techniques where various types of industrial and municipal waste are processed in cement kilns. This approach helps in recovering energy and material value from waste streams while simultaneously treating hazardous materials.
- Zero-waste initiatives: Some cement plants are aiming for zero-waste targets by implementing comprehensive waste management systems that ensure all waste is either recycled, reused or recovered.
Partha Dash, Managing Director, Moglix, says, “There’s also a common belief that green procurement is more expensive, which can be a significant barrier, especially when resources for sustainable products are limited. Awareness and readiness for green practices are still low. Many people don’t fully understand the importance of sustainable procurement in construction, and there’s a lack of information about the market for green materials. Without adequate training and a clear structure for green purchasing, it’s difficult for companies to fully commit to sustainability. Moreover, existing policies and regulations aren’t strong enough to drive real change, and without enforcement and incentives, the availability of green materials remains limited.”
These strategies and initiatives reflect a growing commitment to sustainability within the cement industry. By effectively managing and repurposing industrial waste, cement producers can not only reduce their environmental impact but also contribute to a more circular and resource-efficient economy.
According to the report Indian Cement Industry: A Key Player in the Circular Economy of India published July 2020, the Indian cement industry is playing a key role by enhancing the application of renewable energy for electrical power generation. The renewable energy installed capacity (wind and solar) in cement plants increased by more than 40 per cent to 276 MW from 2010 to 2017. Out of the total, 42 MW is solar power, while off-site wind installations account for 234 MW. A company has undertaken the target of switching over to renewable energy for 100 per cent of all electrical energy needs by 2030. Big players like UltraTech Cement are targeting 25 per cent share of their total power consumption by green energy technologies.
Apart from the solar photovoltaic route, the cement industry is making efforts to tap solar energy through thermal routes.
Government initiatives
The Indian government is actively promoting circular economy principles through various policies and regulations aimed at enhancing sustainability and resource efficiency. The National Clean Energy Fund (NCEF) supports innovative projects in energy efficiency and emission reduction, including those incorporating circular economy practices.
The Swachh Bharat Mission (SBM) and Solid Waste Management Rules, 2016, focus on improving waste management and recycling, encouraging the use of recycled materials in construction and cement production. The Plastic Waste Management Rules, 2016, emphasise recycling and the use of recycled plastic, including as alternative fuel in cement kilns. The National Resource Efficiency Policy (NREP) promotes resource efficiency across sectors, including cement, and the government’s clean technology schemes incentivise the adoption of green technologies.
Additionally, the draft National Circular Economy Policy, currently in development, aims to provide a comprehensive framework for advancing circular economy practices across all industries. These initiatives collectively support the transition towards more sustainable and circular practices in the cement sector.
Emerging trends in circular economy
The cement industry is witnessing several emerging trends in circular economy practices, reflecting a shift towards greater sustainability and resource efficiency. One notable trend is the increased use of alternative fuels and raw materials. Cement producers are exploring the use of industrial and municipal waste, such as tires, plastics, and biomass, to replace traditional fossil fuels and raw materials, reducing their carbon footprint and conserving natural resources.
Another significant trend is the advancement of circular product design and lifecycle management. Cement companies are focusing on designing products that are easier to recycle or reuse at the end of their lifecycle. This includes developing new types of cement and concrete with enhanced durability
and recyclability.
Waste-to-resource initiatives are also gaining traction. Innovations in waste processing technologies enable the conversion of waste materials into valuable resources for cement production, such as incorporating recycled concrete aggregate (RCA) and by-products like fly ash and slag into new cement products.
Digitalisation and data analytics are emerging as crucial tools in advancing circular economy practices. Advanced monitoring and analytics technologies help optimise resource use, track waste streams, and improve overall efficiency in cement production.
Finally, there is a growing emphasis on collaborative partnerships. Cement companies are increasingly collaborating with governments, NGOs, and other industries to drive circular economy initiatives and develop innovative solutions for sustainable development. These trends highlight a transformative shift towards a more circular and sustainable approach in the cement industry, aligning with global efforts to reduce environmental impact and promote resource efficiency.
Conclusion
The adoption of circular economy principles in the cement industry is proving to be a pivotal step towards enhancing sustainability and reducing environmental impact. By embracing alternative and recycled materials, the industry is reducing its reliance on virgin resources and minimising waste. Government policies, such as the National Clean Energy Fund and Solid Waste Management Rules, provide crucial support for these practices, fostering a regulatory environment conducive to circular economy initiatives. Emerging trends, including the use of alternative fuels, circular product design, waste-to-resource innovations, and advanced digital technologies, underscore the industry’s commitment to resource efficiency and sustainability. Collaborative efforts across sectors further drive these advancements, paving the way for a more resilient and environmentally responsible cement industry. As the sector continues to integrate circular economy principles, it not only aligns with global sustainability goals but also sets a benchmark for other industries striving for a circular future.
– Kanika Mathur
Concrete
Installing a solar system is just the first step
Published
2 months agoon
September 23, 2024By
adminRaman Bhatia, Founder and Managing Director, Servotech Power Systems, talks about innovative approaches to advancing energy efficiency in the solar sector, from embracing the ‘Make in India’ initiative to pioneering new technologies.
Can you provide an overview of Servotech Power Systems’ contributions to energy efficiency in the solar sector?
Throughout its journey with a strong motto of providing high-quality solar solutions, Servotech made noteworthy contributions towards energy efficiency in the solar sector, through innovative technologies and solutions. By developing high-efficiency solar solutions that are both sustainable and reliable, Servotech has played its part in making solar energy a household name. The company has expanded its reach across various sectors. Servotech’s residential solar solutions empower homeowners to reduce their carbon footprint and electricity bills. The company provides solar solutions for industries, helping them reduce energy costs, improve their environmental quotient and comply with sustainability regulations. Servotech caters to the commercial sector by offering rooftop and ground-mounted solar power plants helping them reduce electricity costs and enhance their brand image, Lastly, the company has been actively involved in executing solar projects for government institutions, aiding in the country’s renewable energy goals and by providing efficient and reliable solar solutions, we contribute to
the government’s efforts in promoting clean
energy adoption.
What role does the ‘Make in India’ initiative play in your strategy to promote energy efficiency and sustainable solutions?
Make in India, a wonderful initiative by our government, has definitely pushed manufacturers across all sectors, especially our sector, which is the renewable energy sector towards indigenous manufacturing. By manufacturing solar components locally, we significantly reduce the carbon footprint associated with transportation and logistics. Local production often leads to cost reductions in solar products which makes solar energy more affordable for consumers, encouraging wider adoption and contributing to energy efficiency. The Make in India initiative also helps create employment opportunities in the solar sector, leading to skill development and a larger workforce dedicated to renewable energy. Domestic manufacturing reduces reliance on imports and strengthens the supply chain, ensuring uninterrupted production and reducing vulnerabilities to global disruptions.
How has Servotech adapted its solar solutions to meet the evolving energy efficiency standards?
Well, it has been more than two decades now. During this long journey, we have constantly worked on ourselves, renovated, and innovated ourselves to keep up with the evolving energy efficiency standards in terms of product development, innovation and R&D. We have consistently incorporated the latest advancements in solar technology that includes the use of higher efficiency solar cells, advanced inverters, and optimised system components. We introduced innovative solar products and solutions that meet the evolving energy efficiency standards. This involves continuous research and development to create more efficient and sustainable products. We prioritise product performance and rigorous testing and quality control measures ensure that our products meet or exceed industry benchmarks and this relentless pursuit of excellence has positioned us as a leader and has helped us in delivering efficient and sustainable
solar solutions.
Could you elaborate on the significance of the engineering and design process in achieving energy efficiency in your solar EPC projects?
The engineering and design phase in solar EPC projects lays the foundation for optimal performance. It involves a careful analysis of site conditions, including solar radiation, shading and environmental factors. By carefully selecting high-performance components and designing the system for optimal orientation and tilt, engineers maximise energy capture. Additionally, this phase focuses on minimising energy losses through efficient wiring, component placement, and system integration. A well-engineered design ensures the solar system operates at peak performance, delivering substantial energy savings and a strong return on investment.
What measures does Servotech implement during the procurement and project execution phases to ensure optimal energy efficiency in its solar power projects?
Constructing a solar system involves a lot of phases with procurement and project execution being the most important ones. During the procurement phase, we prioritise the development of high-efficiency solar modules, inverters and other components. Rigorous quality assurance processes and performance testing are conducted to verify that all components meet or exceed industry standards and are compatible with project requirements. In the project execution phase, Servotech conducts detailed site assessments to determine the optimal system orientation, tilt angle and shading analysis. Strict adherence to installation guidelines and best practices ensures proper system integration and performance. Post-installation, the system undergoes comprehensive testing to verify energy efficiency and performance. Monitoring systems are often incorporated to track performance and identify areas for improvement.
How does your operation and maintenance service contribute to maintaining and enhancing the energy efficiency of installed systems?
Installing a solar system is just the first step; operating and maintaining it properly is equally important to ensure the system runs efficiently over the long term and for that we conduct regular inspections to detect and address issues like module degradation and inverter malfunctions early, preventing energy losses. Our team ensures optimal performance through routine cleaning and maintenance, which maximises sunlight absorption and energy generation. Continuous performance monitoring using advanced data analytics allows us to optimise system settings, while preventive and corrective maintenance activities minimise downtime and equipment failures. By utilising techniques such as module-level monitoring and inverter tuning, Servotech ensures that solar systems operate at peak efficiency, delivering maximum energy output and long-term cost savings.
In your view, how important is radiation data analytics and project feasibility studies in the planning of energy-efficient solar projects?
Radiation data analytics and project feasibility studies are absolutely critical for the successful planning of energy-efficient solar projects. Accurate radiation data allows for precise predictions of energy generation, system sizing and financial returns. By analysing radiation patterns, engineers can optimise system design, including orientation and tilt angles, to maximise energy capture. Feasibility studies help identify potential risks, such as shading or grid constraints, enabling proactive solutions. These studies also assess financial viability, considering ROI, payback periods, and incentives, ensuring projects are economically sound enabling data-driven decision-making throughout the project lifecycle.
Looking ahead, what are the key trends and innovations in energy efficiency that Servotech Power Systems plans to focus on in the near future?
Energy efficiency is a dynamic realm with constant emergence of trends and innovations. The company recognises the value these trends and innovations will add in the growth of energy efficiency in the solar sector. Our innovative product solar powered EV charging carport integrates solar power with EV charging, which is an innovative take on how we can charge our EVs and also save energy from renewable sources. Additionally, Servotech plans to invest in enhancing the quality of bifacial solar panels to increase energy generation. We are investing in research and development of major solar developments and understand the importance of energy storage in enhancing grid stability and optimising energy utilisation and grid optimisation. In fact, we are developing an energy storage system that will accelerate the adoption of renewable energy in low electricity areas.
Exploring digitisation of energy efficiency, we are focused on developing advanced monitoring and control systems to optimise system performance, predict maintenance needs. Lastly, to meet the growing demand for clean energy, we are exploring the integration of solar power with other renewable energy sources like wind and hydro to create hybrid power systems.
– Kanika Mathur
AM/NS India’s Steel Project Stays in Odisha
Lower sales realization impacts margins for cement makers in Q2 FY25
JSW Steel and POSCO to Invest ?650 Billion in Odisha Steel Plant
Steel companies face Rs 89,000 crore inventory crisis
JSW and POSCO collaborate for steel plant
AM/NS India’s Steel Project Stays in Odisha
Lower sales realization impacts margins for cement makers in Q2 FY25
JSW Steel and POSCO to Invest ?650 Billion in Odisha Steel Plant
Steel companies face Rs 89,000 crore inventory crisis
JSW and POSCO collaborate for steel plant
Trending News
-
Concrete4 weeks ago
Cortec named key player in concrete admixture market
-
Concrete3 weeks ago
Ador Welding Limited and Ador Fontech announce merger completion as a strategic move towards strengthening Global Leadership in Welding Solutions
-
Concrete1 month ago
True north seeks exit from shree digvijay cement
-
Concrete3 weeks ago
Water conservation is vital in our mining operations