Connect with us

Process

Low-carbon technologies for cement production

Published

on

Shares

Dr. JD Bapat sheds light on some of the emerging green alternatives in cement manufacturing and the benefits they offer.
The cement industry faces a number of challenges that include depleting fossil fuel reserves, scarcity of raw materials, perpetually increasing demand for cement and concretes and growing environmental concerns linked to climate change. Every tonne of Ordinary Portland Cement (OPC) that is produced releases on average a similar amount of carbon dioxide (CO2) into the atmosphere or in total roughly 5 per cent of all anthropogenic carbon emissions[1]. The cement production capacity in India is estimated to rise from the current (2014) 366×106 t/a to 550×106 t/a in 2020. Along with the rise in production, there will also be corresponding increase in the industry?s absolute energy use and the CO2 emissions. Figure 1 gives a rather alarming picture of global cement industry CO2 emissions by 2050. All efforts must be made to mitigate the likely grim situation.

Improved production methods and formulations that reduce CO2 emissions from the cement manufacturing process are thus high on the agenda. Emission reduction is also needed to counter the impacts on product cost of new regulations and escalating fuel prices. In this regard, locally available minerals, recycled materials and waste (industry, agriculture and domestic) may be suitable for blending with OPC as partial replacement. Fly ash (FA), blast furnace slag (BFS) and silica fume (SF) are three well known examples of cement replacement materials that are in use today.

Alternative fuels for kiln and power from renewable sources
While the Indian cement industry has achieved significant achievements in terms of improvement in energy efficiency, use of alternate fuels for kiln has not really taken off. At present, the Thermal Substitution Rate (TSR) of Indian cement industry is just 0.5-1 per cent, while in some developed countries, this figure is as high as 60 per cent[2]. The use of alternative fuels for meeting energy requirement is a sustainable initiative which helps save fossil fuel and mitigates GHG emissions and also facilitates the difficult task of waste disposal in an environmentally sound manner.

The Cement Manufacturers? Association (CMA) has identified hazardous wastes from industry; refuse derived fuel (RDF) from municipal solid waste (MSW), used tyres, biomass and plastic waste as the promising alternative fuels for Indian cement industry. However the long-term and sustained availability of these alternative fuels, in the vicinity of cement plant, is an important consideration for their use, as the plant will have to invest in making necessary modifications in the kiln section, including pre-heater, burner, etc. Biomass is one of the promising alternative fuels. The cement companies have an option of captive energy-crop plantation, to ensure continued supply of biomass for kiln burning. The government also needs to bring in appropriate changes in the emission standards and policies to promote the use of alternate fuels.

The biomass-based alternative fuels are considered carbon neutral as biomass growth fixes the carbon emitted during its combustion. The availability of biomass is also quite large among the alternative fuels and as per the estimate it can replace 10.38×106 t/a of coal used in the cement industry. That is equivalent to TSR potential of 36 per cent and the CO2 reduction potential of 17.6×106 t/a, on the national scale[3].

Among the renewable energy (RE) alternatives, solar PV and wind power hold promise for cement plants. A modern 1 MTPA capacity cement plant requires about 15 MW installed capacity of electrical energy for its operation. The use of renewable energy is site-specific and may be possible only in some cases. The experience shows that higher renewable energy rates can be achieved if older, smaller capacity wind turbines are replaced by modern higher capacity wind turbines and erecting solar PV systems on the same site, to gain from both wind and solar power in a single system. The wind and solar power have the advantage of ?banking? and ?wheeling? (feeding power into the national electricity grid at one location (banking), to use it later at different location (wheeling)), thereby yielding higher benefits. Four cement plants in the South have already installed wind power units generating about 80 MW power and fed into the national power grid. One of the major reasons for very few solar PV installations is the price constraint and the requirement of large area. At present, solar PV power is nearly three times costlier in comparison with the coal based power. The cement plant can install solar PV/wind power station in the used mine areas also[4].

Innovative size reduction technology
The new grinding technologies that lead to higher replacement of cement by mineral admixtures, in the blended cement, with improved performance, should be welcome. Presently the Indian Standards allow maximum 35 per cent fly ash (FA) and 70 per cent blast furnace slag (BFS), as the replacement of cement. The increased use of FA (>25per cent) or BFS (>50 per cent) results in a final product that is slow to develop early compressive strength (1, 3, 7 day). Kumar et. al.[5,6] report, higher replacement without compromising on early strength development is possible through mechanical activation of FA and BFS. The activation is done through size reduction in vibratory or attrition mills. It was found that up to 65 per cent of the clinker in blended cement could be replaced with such activated FA. The strength of the resulting product was comparable to that of commercial cement containing only 20 to 25 per cent FA.

The increased reactivity along with reduced water requirement of vibratory and attrition-milled FA are attributed to the fact that, with the new technique, the small (<1 micron) particles of the fly ash retain their original spherical shape. Because the spherical shape of particles remains intact in mechanically-activated FA, the resulting hydrated cement demonstrated lower porosity and improved strength compared to a product made with ball-milled FA. The mechanically activated ground granulated blast furnace slag (GGBS) could replace 50 to 95 per cent of the clinker in Portland slag cement (PSC). The test results showed that Portland slag cement containing 80 to 85 per cent mechanically activated GGBS was much stronger than typical commercial Portland slag cement, which contained 35 per cent GGBS. Both 1-day and 28-day strength were found to increase. The EMC Cement Company, near Jewett, Texas, USA, produces energetically modified cement (EMC) and pozzolana using a commercialized technology based on this mechanical activation concept. The plant began operations in September, 2004 with an initial production capacity of about 1,50,000 t/a, which can be increased to meet demand. Waste fly ash from a power plant is conveyed directly to the EMC production facility[7]. The electrical energy used for mechanical activation ranges from 30-50 kWh/t product (EMC Cement 2012) and should be viewed in comparison with the thermal and electrical energy savings accrued to the plant due to higher FA or slag replacement. The block diagram to manufacture PPC with mechanically activated FA is shown in Figure 2[8].

Portland limestone cement
The Portland limestone cement or PLC is a slightly modified version of Portland cement that improves the environmental footprint and gives comparable performance. The Indian Standards IS269-2013 permits addition of limestone (LS) up to 5 per cent as performance improver. As per the European Standard EN 197-1 (2000), 5 per cent LS addition is permitted in all 27 approved types, as minor additional constituent (MAC). Out of that, 4 are PLC, permitting higher additions of LS, in addition to 5 per cent as MAC. The CEM II/A-L and CEM II/A-LL allow 6 to 20 per cent LS addition and CEM II/B-L and CEM II/B-LL allow 21-35 per cent LS addition. PLC is described in ASTM C595 & AASHTO M240 specifications and may contain 5-15 per cent LS.

It can be made at any Portland cement manufacturing plant. The crushed and dried LS is weigh-fed to the finish grinding mill along with clinker and gypsum. The LS, being relatively softer, is more easily ground than the clinker (which is harder) and gets concentrated in the fine particle fraction. The overall fineness must be higher (for equivalent performance). In order to bring the fineness of the clinker fraction similar to OPC, production rate is slowed and some additional grinding energy is required. However it is more than offset by lower clinker content and related kiln fuel savings. The addition of grinding aids is found to increase the mill performance[9]. The grinding improves the particle size distribution and the hydration is enhanced by physical and chemical interaction. The addition of LS up to 15 per cent has significance, as may be seen in Figure 3[10].

As may be seen in the figure, there is no adverse impact on the compressive strength and the porosity of cement up to 15 per cent LS addition.

In fresh concrete, PLC improves workability and reduces ?bleeding? as compared to OPC. A wide range of data show the average strength of mortars and concretes with and without LS are the same. However, the optimum amount of LS needs to be determined for each combination of LS and clinker. Permeability is somewhat reduced with the use of LS, probably due more to the reduction in the connectivity of the pores rather than to their volume. Freeze/thaw resistance is equivalent in OPC and PLC, when the amount of entrained air or more specifically, the air-void system is controlled. The sulphate resistance is primarily a function of tricalcium aluminate (C3A) content of cement and the water/cement ratio. The performance of PLC is equivalent to that of the OPC, under sulphate attack, for extended test periods. The use of up to 5 per cent LS in cement does not increase the susceptibility of mortars to alkali-silica reaction (ASR) [11]. More research is required as to how the properties of clinker and LS could be best utilised, to obtain optimum benefits during production and the application of PLC in concrete.

Conclusions

  • In view of the projected increase in production, all efforts must be made to reduce CO2 emissions due to the cement manufacturing process.
  • The hazardous wastes from industry, refuse derived fuel (RDF) from municipal solid waste (MSW), used tyres, biomass and plastic waste are the promising alternatives, which can partially replace mineral coal, as fuels for Indian cement industry. Biomass is carbon-neutral and holds special importance under Indian conditions due to its large scale and sustained availability throughout the country. The cement industry also has an option of energy-crop plantation. Among the renewable energy (RE) alternatives, solar PV and wind power hold promise for cement plants. Both have the advantage of ?banking? and ?wheeling?.
  • It is possible to produce blended cement with higher replacement of FA (up to 65 per cent) and BFS (80-85 per cent), using mechanically activated FA and GGBS, without compromising on the performance. The activation is carried out in vibratory or attrition mills.
  • The Portland Limestone Cement (PLC) is sustainable alternative blended cement. The PLC containing LS up to 15per cent shows performance comparable with respect to the OPC.

References

  • [1] Bapat Jayant D., ?Mineral Admixtures in Cement and Concrete?, CRC Press, 2012
  • [2] Imbabi M. S., ?Trends and developments in green cement and concrete technology?, International Journal of Sustainable Built Environment, Vol. 1, 2012, pp 194-216
  • [3] ?Action Plan for Enhancing the Use of Alternate Fuels and Raw Materials in the Indian Cement Industry?, Cement Manufacturers? Association and Institute of Industrial Productivity, India, August 2013
  • [4] ?Existing and Potential Technologies for Carbon Emissions Reductions in the Indian Cement Industry?, Cement Sustainability initiative, World Business Council for Sustainable Development (WBCSD), January 2013
  • [5] Kumar R., Kumar S., Mehrotra S. P., ?Towards Sustainable Solutions for Fly Ash through Mechanical Activation?, Resources, Conservation and Recycling, Vol. 52, 2007, pp 157-179
  • [6] Kumar S., Kumar R., Bandopadhyay A., Alex T. C., Ravi Kumar B., Das S. K., Mehrotra S. P., ?Mechanical Activation of Granulated Blast Furnace Slag and its Effect on the Properties and Structure of Portland Slag Cement?, Cement & Concrete Composites, Vol. 30, 2008, pp 679-685
  • [7] Energetically Modified Cement: http://www.emccement.com/
  • [8] Hasanbeigi A., Price L., Lin E., ?Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production, U.S. Department of Energy, DE-AC02-05CH11231, April 2012
  • [9] Farrington S., ?Strength Enhancement for Portland Limestone Cements?, PCA Manufacturing Committee Fall Technical Session August 25, 2014
  • [10] Paul D. Tennis P. D., ?Specification Requirements and Environmental Performance of Portland- Limestone Cements?, ACI Session: Portland-Limestone Cements: A Technology to Improve the Sustainability of Concrete, Minneapolis, USA, April 15, 2013
  • [11] Hawkins P., Tennis, P. D., Detwiler, R. J., ?The Use of Limestone in Portland Cement: A State-of-the-Art Review, EB227, Portland Cement Association, Skokie, Illinois, USA, 2003, 44 pages
  • The author is an independent professional in cement and concrete sector (http://www.drjdbapat.com)

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Process

Price hikes, drop in input costs help cement industry to post positive margins: Care Ratings

Published

on

By

Shares

Region-wise,the southern region comprises 35% of the total cement capacity, followed by thenorthern, eastern, western and central region comprising 20%, 18%, 14% and 13%of the capacity, respectively.

The cement industry is expected to post positive margins on decent price hikes over the months, falling raw material prices and marked drop in overall production costs, said an analysis of Care Ratings.

Wholesale and retail prices of cement have increased 11.9% and 12.4%, respectively, in the current financial year. As whole prices have remained elevated in most of the markets in the months of FY20, against the corresponding period of the previous year.

Similarly, electricity and fuel cost have declined 11.9% during 9M FY20 due to drop in crude oil prices. Logistics costs, the biggest cost for cement industry, has also dropped 7.7% (selling and distribution) as the Railways extended the benefit of exemption from busy season surcharge. Moreover, the cost of raw materials, too, declined 5.1% given the price of limestone had fallen 11.3% in the same aforementioned period, the analysis said.

According to Care Ratings, though the overall sales revenue has increased only 1.3%, against 16% growth in the year-ago period, the overall expenditure has declined 3.2% which has benefited the industry largely given the moderation in sales.

Even though FY20 has been subdued in terms of production and demand, the fall in cost of production has still supported the cement industry by clocking in positive margins, the rating agency said.

Cement demand is closely linked to the overall economic growth, particularly the housing and infrastructure sector. The cement sector will be seeing a sharp growth in volumes mainly due to increasing demand from affordable housing and other government infrastructure projects like roads, metros, airports, irrigation.

The government’s newly introduced National Infrastructure Pipeline (NIP), with its target of becoming a $5-trillion economy by 2025, is a detailed road map focused on economic revival through infrastructure development.

The NIP covers a gamut of sectors; rural and urban infrastructure and entails investments of Rs.102 lakh crore to be undertaken by the central government, state governments and the private sector. Of the total projects of the NIP, 42% are under implementation while 19% are under development, 31% are at the conceptual stage and 8% are yet to be classified.

The sectors that will be of focus will be roads, railways, power (renewable and conventional), irrigation and urban infrastructure. These sectors together account for 79% of the proposed investments in six years to 2025. Given the government’s thrust on infrastructure creation, it is likely to benefit the cement industry going forward.

Similarly, the Pradhan Mantri Awaas Yojana, aimed at providing affordable housing, will be a strong driver to lift cement demand. Prices have started correcting Q4 FY20 onwards due to revival in demand of the commodity, the agency said in its analysis.

Industry’s sales revenue has grown at a CAGR of 7.3% during FY15-19 but has grown only 1.3% in the current financial year. Tepid demand throughout the country in the first half of the year has led to the contraction of sales revenue. Fall in the total expenditure of cement firms had aided in improving the operating profit and net profit margins of the industry (OPM was 15.2 during 9M FY19 and NPM was 3.1 during 9M FY19). Interest coverage ratio, too, has improved on an overall basis (ICR was 3.3 during 9M FY19).

According to Cement Manufacturers Association, India accounts for over 8% of the overall global installed capacity. Region-wise, the southern region comprises 35% of the total cement capacity, followed by the northern, eastern, western and central region comprising 20%, 18%, 14% and 13% of the capacity, respectively.

Installed capacity of domestic cement makers has increased at a CAGR of 4.9% during FY16-20. Manufacturers have been able to maintain a capacity utilisation rate above 65% in the past quinquennium. In the current financial year due to the prolonged rains in many parts of the country, the capacity utilisation rate has fallen from 70% during FY19 to 66% currently (YTD).

Source:moneycontrol.com

Continue Reading

Process

Wonder Cement shows journey of cement with new campaign

Published

on

By

Shares

The campaign also marks Wonder Cement being the first ever cement brand to enter the world of IGTV…

ETBrandEquity

Cement manufacturing company Wonder Cement, has announced the launch of a digital campaign ‘Har Raah Mein Wonder Hai’. The campaign has been designed specifically to run on platforms such as Instagram, Facebook and YouTube.

#HarRaahMeinWonderHai is a one-minute video, designed and conceptualised by its digital media partner Triature Digital Marketing and Technologies Pvt Ltd. The entire journey of the cement brand from leaving the factory, going through various weather conditions and witnessing the beauty of nature and wonders through the way until it reaches the destination i.e., to the consumer is very intriguing and the brand has tried to showcase the same with the film.

Sanjay Joshi, executive director, Wonder Cement, said, "Cement as a product poses a unique marketing challenge. Most consumers will build their homes once and therefore buy cement once in a lifetime. It is critical for a cement company to connect with their consumers emotionally. As a part of our communication strategy, it is our endeavor to reach out to a large audience of this country through digital. Wonder Cement always a pioneer in digital, with the launch of our IGTV campaign #HarRahMeinWonderHai, is the first brand in the cement category to venture into this space. Through this campaign, we have captured the emotional journey of a cement bag through its own perspective and depicted what it takes to lay the foundation of one’s dreams and turn them into reality."

The story begins with a family performing the bhoomi poojan of their new plot. It is the place where they are investing their life-long earnings; and planning to build a dream house for the family and children. The family believes in the tradition of having a ‘perfect shuruaat’ (perfect beginning) for their future dream house. The video later highlights the process of construction and in sequence it is emphasising the value of ‘Perfect Shuruaat’ through the eyes of a cement bag.

Tarun Singh Chauhan, management advisor and brand consultant, Wonder Cement, said, "Our objective with this campaign was to show that the cement produced at the Wonder Cement plant speaks for itself, its quality, trust and most of all perfection. The only way this was possible was to take the perspective of a cement bag and showing its journey of perfection from beginning till the end."

According to the company, the campaign also marks Wonder Cement being the first ever cement brand to enter the world of IGTV. No other brand in this category has created content specific to the platform.

Continue Reading

Process

In spite of company’s optimism, demand weakness in cement is seen in the 4% y-o-y drop in sales volume. (Reuters)

Published

on

By

Shares

Cost cuts and better realizations save? the ?day ?for ?UltraTech Cement, Updated: 27 Jan 2020, Vatsala Kamat from Live Mint

Lower cost of energy and logistics helped Ebitda per tonne rise by about 29% in Q3
Premiumization of acquired brands, synergistic?operations hold promise for future profit growth Topics

UltraTech Cement
India’s largest cement producer UltraTech Cement Ltd turned out a bittersweet show in the December quarter. A sharp drop in fuel costs and higher realizations helped drive profit growth. But the inherent demand weakness was evident in the sales volumes drop during the quarter.

Better realizations during the December quarter, in spite of the 4% year-on-year volume decline, minimized the pain. Net stand-alone revenue fell by 2.6% to ?9,981.8 crore.

But as pointed out earlier, lower costs on most fronts helped profitability. The chart alongside shows the sharp drop in energy costs led by lower petcoke prices, lower fuel consumption and higher use of green power. Logistics costs, too, fell due to lower railway freight charges and synergies from the acquired assets. These savings helped offset the increase in raw material costs.

The upshot: Q3 Ebitda (earnings before interest, tax, depreciation and amortization) of about ?990 per tonne was 29% higher from a year ago. The jump in profit on a per tonne basis was more or less along expected lines, given the increase in realizations. "Besides, the reduction in net debt by about ?2,000 crore is a key positive," said Binod Modi, analyst at Reliance Securities Ltd.

Graphic by Santosh Sharma/Mint
What also impressed analysts is the nimble-footed integration of the recently merged cement assets of Nathdwara and Century, which was a concern on the Street.

Kunal Shah, analyst (institutional equities) at Yes Securities (India) Ltd, said: "The company has proved its ability of asset integration. Century’s cement assets were ramped up to 79% capacity utilization in December, even as they operated Nathdwara generating an Ebitda of ?1,500 per tonne."

Looks like the demand weakness mirrored in weak sales during the quarter was masked by the deft integration and synergies derived from these acquired assets. This drove UltraTech’s stock up by 2.6% to ?4,643 after the Q3 results were declared on Friday.

Brand transition from Century to UltraTech, which is 55% complete, is likely to touch 80% by September 2020. A report by Jefferies India Pvt. Ltd highlights that the Ebitda per tonne for premium brands is about ?5-10 higher per bag than the average (A cement bag weighs 50kg). Of course, with competition increasing in the arena, it remains to be seen how brand premiumization in the cement industry will pan out. UltraTech Cement scores well among peers here.

However, there are road bumps ahead for the cement sector and for UltraTech. Falling gross domestic product growth, fiscal slippages and lower budgetary allocation to infrastructure sector are making industry houses jittery on growth. Although UltraTech’s management is confident that cement demand is looking up, sustainability and pricing power remains a worry for the near term.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds