Connect with us

Concrete

Value added concrete

Published

on

Shares

After the ready-mixed concrete industry?s successful journey of 20 long years in India, the new era concrete has to perform many applications apart from achieving strength and workability. The article outlines some new developments in the field.

Water plus cement plus aggregates; the formula seems mighty simple, but in reality concrete manufacturing is a far more complex process. As India builds its infrastructure, the ready-mixed concrete industry is steadily gaining pace as the most viable option to speed up construction.

Various properties such as sustainability, easy flow, colourful, lightweight, high early strength, durability, etc., need to be attained to meet the requirements specified by the construction industry. A deft designing of concrete is done to achieve these properties. All such need-based concrete products are often tailor-made and as always, have proved to be value for money.

High volume Fly Ash/High Volume GGBS concrete
Supplementary Cemetitious Materials (SCMs) such as fly ash, GGBS (Ground Granulated Blast Furnace Slag) in concrete are in use for a reasonably long period due to the overall economy in their production as well as their improved performance characteristics in aggressive environments. High Volume GGBS and HVFA concrete is a major breakthrough as compared to conventional concrete due to cement savings, cost savings, environmental and social benefits offered by it. So it?s wide spread usage should be encouraged in extending the lifespan of structures.

Usage of High Volume GGBS and HVFA significantly reduces the risk of damages caused by Alkali-Silica Reaction (ASR), provides higher resistance to chloride ingress by making the concrete more impermeable and reduces the risk of reinforcement corrosion and also provides higher resistance to sulphate attacks and other chemicals. The resulting product has a much lower level of embodied CO2 than if OPC or ordinary cement replacements were used. With the increase of specific surface area and content of GGBS/HVFA, the repulsion between cement particles increases, improving the workability of the HVGGBS and HVFA incorporated concretes. To obtain maximum benefits, the optimum substitute content of HVFA is 50 per cent in standard and high grades; similarly optimum substitute content of GGBS is 70 per cent in standard and high grades of concrete.

Temperature controlled concrete
Cracking in mass concrete structures is undesirable as it affects the water-tightness, durability, appearance, and overall integrity of the structures. Cracking in mass concrete will normally occur when tensile stresses that surpass the tolerance limit of concrete are developed. These tensile stresses may occur due to imposed loads on the structure, but they more often occur because of the restraint against volumetric change. Largest volumetric change in concrete mass arises from change in temperature. The hydration of a concrete mixture is a process that liberates heat and the rate of heat generation is accelerated with the rise in concrete temperature. Concrete is a poor conductor of heat, and the rate of heat evolution due to the hydration process is much greater than the rate of heat dissipation. Development of high concrete temperatures can cause a number of effects that are detrimental to the long-term concrete performance such as:

  • Thermal stresses and thermal cracking
  • The tendency for drying shrinkage cracking
  • Decreased long-term concrete strengths and durability as a result of cracking
  • Loss of structural integrity and monolithic action, and
  • Permeability.

Steel fibre reinforced concrete
Concrete is strong in compression but weak in tension and hence, in structural applications this shortcoming of concrete is overcome by providing steel reinforcing bars to bear the tensile forces once the concrete has cracked. In reinforced concrete, the tensile failure strain of the concrete is significantly lower than the yield strain of the steel reinforcement and the concrete cracks before any significant load is transferred to the steel(1). Short, discrete steel fibres provide discontinuous three-dimensional reinforcement that pick up load and transfer stresses at micro-crack level. This reinforcement provides tensile capability and crack control to the concrete section before the establishment of visible macro cracks, thereby endorsing ductility or toughness.

Steel fibres modify concrete properties as follows:

  • Improve mix rheology or cracking characteristics in the plastic stage
  • Improve the tensile or flexural strength
  • Improve the impact and abrasion resistance
  • Control cracking and the mode of failure by means of post-cracking ductility, and
  • Improve durability.

The functions of steel fibres and conventional concrete reinforcement are clearly different. Steel fibres are added to concrete mainly to influence the way in which concrete cracks as it fails. Micro-cracks form when concrete is loaded. Fibres bridge cracks during loading and hence, influence mechanical performance.

Steel fibres have a tensile strength typically 2-3 times greater than traditional fabric reinforcement and a significantly greater surface area (for a given mass of steel) to develop bond with the concrete matrix(2). The average fibre pull-out length is l/4, which for the longest 60mm fibres, is only 15mm. This length is insufficient to allow efficient use to be made of the high tensile strength of drawn wire unless devices such as bends, crimps or flattened ends are used to improve anchorage efficiency(3).

Factors that influence performance of steel fibres in concrete are:

  • Bond and anchorage mechanisms (e.g., straight or deformed shape, end conditions, cones or hooked ends)
  • Aspect ratio (the fibre length and diameter)
  • Dosage (kg/m3)
  • Fibre count (number of fibres per kg of fibres), which is a function of fibre size and dosage
  • Tensile strength, and
  • Elastic modulus

Depending on the service life and exposure conditions, steel fibres by virtue of their disconnected nature and small diameter eliminate corrosion and associated spalling damage compared to steel rebar and enhance resistance to chloride and carbonation induced corrosion. Unlike synthetic macrofibres, they are not affected by elevated temperatures.

Reference
1.Technical Report No. 63, Guidance for the Design of Steel-Fibre-Reinforced Concrete, 2007, p 1
2.Technical Report No. 63, Guidance for the Design of Steel-Fibre-Reinforced Concrete, 2007, p 4
3. John Newman and Ban Seng Choo Advanced Concrete Technology, Processes, 2003, p 6/9

Technologies from RMC Readymix (India)
Environprotectcrete

In an era of growing environmental consciousness, more and more customers are adopting Green Building Certifications such as LEED? India developed by Indian Green Building Council (IGBC) or Green Rating for Integrated Habitat Assessment (GRIHA) developed by The Energy Resource Institute (TERI). Environprotectcrete? provides desired levels of consistence and the compressive strengths at various ages, depending upon client requirements and enables the customers to earn more points, thus facilitating the process of obtaining certification and enhancing the ratings.

Thermocrete
It is chilled concrete that gives control over the temperature differential between the core and surface of the concrete, thereby mitigating thermal tensile cracks. It also prevents delayed ettringite formation, which may occur in certain concretes of particular chemical makeup exposed to temperatures over about 70?C during curing stage.

FRCcrete
This product incorporates steel fibres, based upon expected loading and sub-base conditions, and completely does away with reinforcement bars in ground supported slabs.

RMC Readymix (India)
The company is a division of Prism Cement Limited, and is one of the largest ready-mixed concrete manufacturers in India. Established in 1996, the company operates 90 ready-mixed concrete plants in 37 cities and towns across the country. The company has always been one of the leaders in setting standards for plant and machinery, production, quality systems and product services in the ready-mixed concrete industry.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

NBCC Wins Rs 550m IOB Office Project In Raipur

PMC Contract Covers Design, Execution And Handover

Published

on

By

Shares

State-owned construction major NBCC India Ltd has secured a new domestic work order worth around Rs 550.2 million from Indian Overseas Bank (IOB) in the normal course of business, according to a regulatory filing.

The project involves planning, designing, execution and handover of IOB’s new Regional Office building at Raipur. The contract has been awarded under NBCC’s project management consultancy (PMC) operations and excludes GST.

NBCC said the order further strengthens its construction and infrastructure portfolio. The company clarified that the contract is not a related party transaction and that neither its promoter nor promoter group has any interest in the awarding entity.

The development has been duly disclosed to the stock exchanges as part of NBCC’s standard compliance requirements.

Continue Reading

Concrete

Nuvoco Q3 EBITDA Jumps As Cement Sales Hit Record

Premium products and cost control lift profitability

Published

on

By

Shares

Nuvoco Vistas Corp. Ltd reported a strong financial performance for the quarter ended 31 December 2025 (Q3 FY26), driven by record cement sales, higher premium product volumes and improved operational efficiencies.

The company achieved its highest-ever third-quarter consolidated cement sales volume of 5 million tonnes, registering growth of 7 per cent year-on-year. Consolidated revenue from operations rose 12 per cent to Rs 27.01 billion during the quarter. EBITDA increased sharply by 50 per cent YoY to Rs 3.86 billion, supported by improved pricing and cost management.

Premium products continued to be a key growth driver, sustaining a historic high contribution of 44 per cent for the second consecutive quarter. The strong momentum reflects rising brand traction for the Nuvoco Concreto and Nuvoco Duraguard ranges, which are increasingly recognised as trusted choices in building materials.

In the ready-mix concrete segment, Nuvoco witnessed healthy demand traction across its Concreto product portfolio. The company launched Concreto Tri Shield, a specialised offering delivering three-layer durability and a 50 per cent increase in structural lifespan. In the modern building materials category, the firm introduced Nuvoco Zero M Unnati App, a digital loyalty platform aimed at improving influencer engagement, transparency and channel growth.

Despite heavy rainfall affecting parts of the quarter, the company maintained improved performance supported by strong premiumisation and operational discipline. Capacity expansion projects in the East, along with ongoing execution at the Vadraj Cement facilities, remain on track. The operationalisation of the clinker unit and grinding capacity, planned in phases starting Q3 FY27, is expected to lift total cement capacity to around 35 million tonnes per annum, reinforcing Nuvoco’s position as India’s fifth-largest cement group.

Commenting on the results, Managing Director Mr Jayakumar Krishnaswamy said Q3 marked strong recovery and momentum despite economic challenges. He highlighted double-digit volume growth, premium-led expansion and a 50 per cent rise in EBITDA. The company also recorded its lowest blended fuel cost in 17 quarters at Rs 1.41 per Mcal. Refurbishment and project execution at the Vadraj Cement Plant are progressing steadily, which, along with strategic capacity additions and cost efficiencies, is expected to strengthen Nuvoco’s long-term competitive advantage.

Continue Reading

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares
Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds